阿秒
超快激光光谱学
物理
超短脉冲
联轴节(管道)
光谱学
格子(音乐)
电子
耦合强度
原子物理学
吸收(声学)
女性化学
声子
领域(数学)
分子物理学
振动耦合
吸收光谱法
化学
动力学(音乐)
能量转移
电子转移
分子动力学
电场
分子振动
作者
Sergej Neb,Dong-bin Shin,Florence Burri,Marko Hollm,Erik W. de Vos,Denis A. Kuznetsov,Christoph R. Müller,Alexey Fedorov,Shunsuke A. Sato,Angel Rubio,L. Gallmann,Ursula Keller
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2026-01-01
卷期号:391 (6780): 75-78
标识
DOI:10.1126/science.aea1523
摘要
Understanding nonadiabatic carrier-lattice interactions at the atomic scale remains a fundamental challenge, yet these processes govern energy transfer in materials and ultimately set limits in microelectronics. We combined attosecond core-level transient absorption spectroscopy with many-body theory to uncover how nonadiabatic electron-phonon coupling drives ultrafast relaxations in a titanium-carbide MXene. Phonon-driven changes in carrier localization modulated local field effects (LFEs), yielding carrier-, site-, and orbital-specific absorption signatures. LFEs served as sensitive fingerprints of electron-phonon coupling strength across the phonon spectrum and revealed a breakdown of the Born–Oppenheimer approximation: Electrons lagged lattice oscillations by 32 ± 8 femtoseconds, whereas holes responded almost instantaneously (7 ± 7 femtoseconds). Our results establish a framework for probing and controlling nonadiabatic carrier-phonon interactions with orbital and site specificity.
科研通智能强力驱动
Strongly Powered by AbleSci AI