无定形固体
析氧
材料科学
电催化剂
催化作用
塔菲尔方程
拉曼光谱
电化学
化学工程
化学物理
纳米技术
分解水
密度泛函理论
过渡金属
金属
非晶态金属
多金属氧酸盐
氧气
协同催化
无机化学
氧化物
阳极
作者
Jianye Liu,Yuyang Liu,Yanqiu Wang,Lirong Zheng,Wenhao He,MingJun HAN,Lei Gan,Geoffrey I. N. Waterhouse,Liu Jinlong,Jie Li
出处
期刊:Small
[Wiley]
日期:2025-11-11
卷期号:: e12000-e12000
标识
DOI:10.1002/smll.202512000
摘要
Abstract Developing stable amorphous multimetal oxides for the anodic oxygen evolution reaction (OER) remains challenging due to structural instability and inhomogeneity. Herein, a polyoxometalate (POM)‐assisted strategy is presented to fabricate amorphous multimetal oxides (Fe y Co 1‐ y O x ‐SiWA) featuring atomically dispersed metal sites and exceptional alkaline stability. Sub‐nanometer [SiW 12 O 40 ] 4− (SiWA) clusters interact strongly with Fe 3+ , locking the metal–oxygen network into a disordered yet stable architecture, suppressing phase segregation and ultimately enabling OER activity. The Fe 0.3 Co 0.7 O x ‐SiWA achieves ultralow OER overpotentials of 277/330 mV at 10/100 mA cm −2 , a Tafel slope of 44.6 mV dec −1 , and an industrial‐grade potential of 1.8 V (vs RHE) at 1000 mA cm −2 , surpassing commercial RuO 2 and most non‐noble catalysts reported to date. Comprehensive mechanistic investigations employing 18 O − labeled differential electrochemical mass spectra (DEMS), in situ infrared, in situ Raman spectroscopy and density functional theory (DFT) calculations revealed a lattice oxygen‐mediated (LOM) pathway that allows for direct O─O coupling, bypassing the rate‐limiting OOH* formation step in conventional adsorbate evolution mechanism (AEM) pathways. Atomic disorder in the amorphous multi‐metal oxides promotes lattice oxygen participation, as validated by both theoretical and experimental evidence. This work provides a paradigm for engineering cluster‐stabilized amorphous oxides while advancing mechanistic understanding of high‐current‐density electrocatalysis through synergistic structure–property insights.
科研通智能强力驱动
Strongly Powered by AbleSci AI