清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Universal Adversarial Patch Attack for Automatic Checkout Using Perceptual and Attentional Bias

对抗制 利用 计算机科学 一般化 人工智能 感知 黑匣子 机器学习 深层神经网络 深度学习 计算机安全 数学 心理学 数学分析 神经科学
作者
Jiakai Wang,Aishan Liu,Xiao Bai,Xianglong Liu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 598-611 被引量:33
标识
DOI:10.1109/tip.2021.3127849
摘要

Adversarial examples are inputs with imperceptible perturbations that easily mislead deep neural networks (DNNs). Recently, adversarial patch, with noise confined to a small and localized patch, has emerged for its easy feasibility in real-world scenarios. However, existing strategies failed to generate adversarial patches with strong generalization ability due to the ignorance of the inherent biases of models. In other words, the adversarial patches are always input-specific and fail to attack images from all classes or different models, especially unseen classes and black-box models. To address the problem, this paper proposes a bias-based framework to generate universal adversarial patches with strong generalization ability, which exploits the perceptual bias and attentional bias to improve the attacking ability. Regarding the perceptual bias, since DNNs are strongly biased towards textures, we exploit the hard examples which convey strong model uncertainties and extract a textural patch prior from them by adopting the style similarities. The patch prior is closer to decision boundaries and would promote attacks across classes. As for the attentional bias, motivated by the fact that different models share similar attention patterns towards the same image, we exploit this bias by confusing the model-shared similar attention patterns. Thus, the generated adversarial patches can obtain stronger transferability among different models. Taking Automatic Check-out (ACO) as the typical scenario, extensive experiments including white-box/black-box settings in both digital-world (RPC, the largest ACO related dataset) and physical-world scenario (Taobao and JD, the world's largest online shopping platforms) are conducted. Experimental results demonstrate that our proposed framework outperforms state-of-the-art adversarial patch attack methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Solar energy完成签到,获得积分10
2秒前
十二完成签到 ,获得积分10
3秒前
xiaoblue完成签到,获得积分10
3秒前
4秒前
雷寒云发布了新的文献求助10
4秒前
科科通通完成签到,获得积分10
6秒前
shin发布了新的文献求助10
11秒前
Joaquin完成签到,获得积分10
21秒前
Doris完成签到 ,获得积分10
23秒前
Fanfan完成签到 ,获得积分10
25秒前
满意涵梅完成签到 ,获得积分10
27秒前
传奇3应助shin采纳,获得10
31秒前
JY完成签到 ,获得积分10
35秒前
土拨鼠完成签到 ,获得积分10
39秒前
Alan完成签到 ,获得积分10
40秒前
轴承完成签到 ,获得积分10
41秒前
橙汁摇一摇完成签到 ,获得积分10
44秒前
俊逸的白梦完成签到 ,获得积分0
54秒前
Hiram完成签到,获得积分10
55秒前
如意的馒头完成签到 ,获得积分10
57秒前
不知道完成签到,获得积分10
1分钟前
想睡觉的小笼包完成签到 ,获得积分10
1分钟前
舒适的涑完成签到 ,获得积分10
1分钟前
赧赧完成签到 ,获得积分10
1分钟前
wsb76完成签到 ,获得积分10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
牛马完成签到 ,获得积分10
1分钟前
quantumdot完成签到,获得积分10
1分钟前
1分钟前
lele发布了新的文献求助10
1分钟前
醉熏的千柳完成签到 ,获得积分10
2分钟前
小井盖完成签到 ,获得积分10
2分钟前
雷寒云完成签到,获得积分10
2分钟前
2分钟前
Grijze完成签到,获得积分10
2分钟前
雷寒云发布了新的文献求助10
2分钟前
末末完成签到 ,获得积分10
2分钟前
TTDY完成签到 ,获得积分0
3分钟前
阿弥陀佛发布了新的文献求助10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788347
求助须知:如何正确求助?哪些是违规求助? 3333714
关于积分的说明 10263216
捐赠科研通 3049616
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511