木筏
计算机科学
人工智能
水准点(测量)
立体摄像机
计算机视觉
立体视觉
匹配(统计)
计算机立体视觉
数学
地图学
地理
聚合物
化学
有机化学
统计
共聚物
作者
Lahav Lipson,Zachary Teed,Jia Deng
标识
DOI:10.1109/3dv53792.2021.00032
摘要
We introduce RAFT-Stereo, a new deep architecture for rectified stereo based on the optical flow network RAFT [35]. We introduce multi-level convolutional GRUs, which more efficiently propagate information across the image. A modified version of RAFT-Stereo can perform accurate real-time inference. RAFT-stereo ranks first on the Middlebury leaderboard, outperforming the next best method on 1px error by 29% and outperforms all published work on the ETH3D two-view stereo benchmark. Code is available at https://github.com/princeton-vl/RAFT-Stereo.
科研通智能强力驱动
Strongly Powered by AbleSci AI