Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease

医学 算法 终末期肾病 糖尿病 逻辑回归 列线图 2型糖尿病 内科学 肾功能 2型糖尿病 肾脏疾病 接收机工作特性 机器学习 疾病 内分泌学 计算机科学
作者
Yutong Zou,Lijun Zhao,Junlin Zhang,Yi-Ting Wang,Yucheng Wu,Honghong Ren,Tingli Wang,Rui Zhang,Jiali Wang,Yuancheng Zhao,Chunmei Qin,Huan Xu,Lin Li,Zhonglin Chai,Mark E. Cooper,Nanwei Tong,Fang Liu
出处
期刊:Renal Failure [Taylor & Francis]
卷期号:44 (1): 562-570 被引量:34
标识
DOI:10.1080/0886022x.2022.2056053
摘要

Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD) and is associated with increased morbidity and mortality in patients with diabetes. Identification of risk factors involved in the progression of DKD to ESRD is expected to result in early detection and appropriate intervention and improve prognosis. Therefore, this study aimed to establish a risk prediction model for ESRD resulting from DKD in patients with type 2 diabetes mellitus (T2DM).Between January 2008 and July 2019, a total of 390 Chinese patients with T2DM and DKD confirmed by percutaneous renal biopsy were enrolled and followed up for at least 1 year. Four machine learning algorithms (gradient boosting machine, support vector machine, logistic regression, and random forest (RF)) were used to identify the critical clinical and pathological features and to build a risk prediction model for ESRD.There were 158 renal outcome events (ESRD) (40.51%) during the 3-year median follow up. The RF algorithm showed the best performance at predicting progression to ESRD, showing the highest AUC (0.90) and ACC (82.65%). The RF algorithm identified five major factors: Cystatin-C, serum albumin (sAlb), hemoglobin (Hb), 24-hour urine urinary total protein, and estimated glomerular filtration rate. A nomogram according to the aforementioned five predictive factors was constructed to predict the incidence of ESRD.Machine learning algorithms can efficiently predict the incident ESRD in DKD participants. Compared with the previous models, the importance of sAlb and Hb were highlighted in the current model.HighlightsWhat is already known? Identification of risk factors for the progression of DKD to ESRD is expected to improve the prognosis by early detection and appropriate intervention.What this study has found? Machine learning algorithms were used to construct a risk prediction model of ESRD in patients with T2DM and DKD. The major predictive factors were found to be CysC, sAlb, Hb, eGFR, and UTP.What are the implications of the study? In contrast with the treatment of participants with early-phase T2DM with or without mild kidney damage, major emphasis should be placed on indicators of kidney function, nutrition, anemia, and proteinuria for participants with T2DM and advanced DKD to delay ESRD, rather than age, sex, and control of hypertension and glycemia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lyw完成签到 ,获得积分10
刚刚
刚刚
岸上牛发布了新的文献求助10
2秒前
chen0815发布了新的文献求助10
3秒前
5秒前
英姑应助郭通采纳,获得10
7秒前
岸上牛完成签到,获得积分10
8秒前
如云之悠完成签到,获得积分10
10秒前
qwe31533完成签到,获得积分10
11秒前
老实紫萱发布了新的文献求助10
11秒前
思源应助灰灰酱采纳,获得10
13秒前
FOODHUA发布了新的文献求助10
14秒前
14秒前
Dean应助ruixuekuangben采纳,获得30
16秒前
老实紫萱完成签到,获得积分10
18秒前
爱睡午觉发布了新的文献求助10
18秒前
19秒前
Lyw完成签到 ,获得积分10
21秒前
22秒前
安详的曲奇完成签到,获得积分10
23秒前
小蘑菇应助yuanshl1985采纳,获得10
25秒前
25秒前
神奇宝贝完成签到,获得积分10
25秒前
香蕉觅云应助风清扬采纳,获得10
26秒前
27秒前
CLMY发布了新的文献求助10
28秒前
辻渃发布了新的文献求助10
29秒前
科目三应助丘山杉采纳,获得10
29秒前
wconer应助ying采纳,获得10
30秒前
阅月发布了新的文献求助10
31秒前
31秒前
32秒前
lic完成签到,获得积分10
32秒前
32秒前
在一完成签到,获得积分10
34秒前
青衣完成签到,获得积分10
36秒前
小懒猪完成签到,获得积分10
36秒前
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4816444
求助须知:如何正确求助?哪些是违规求助? 4126955
关于积分的说明 12771078
捐赠科研通 3866077
什么是DOI,文献DOI怎么找? 2127476
邀请新用户注册赠送积分活动 1148480
关于科研通互助平台的介绍 1043837