Improved classification and grading of interferents in serum specimens using machine learning

人工智能 模式识别(心理学) 计算机科学 卷积神经网络 分级(工程) 特征提取 分割 溶血 医学 工程类 免疫学 土木工程
作者
Hairui Wang,Helin Huang,Xiaomei Wu
标识
DOI:10.1109/bibm52615.2021.9669463
摘要

Serum specimens containing interferents affect the accuracy of test results through a variety of mechanisms. Consequently, rigorous quality control of serum samples before biochemical analysis may help prevent incorrect results. Based on the hypothesis that serum color images contain information about the category and concentration of interferents, a machine learning method was proposed to automatically classify and grade color images of serum samples into three categories and five levels of interferent concentration. First, using a color correction method, the color image was preprocessed to eliminate ambient light color cast during the shooting process. Serum regions were then segmented using a convolutional neural network. Subsequently, color moment features were extracted and utilized in the classification of hemolysis, icterus, and lipemia (HIL), the three most common interferents in blood examinations. Finally, feature selection was utilized to select the most suitable features for grading the degree of HIL. This feature subset was used to grade five concentration levels for each category. The Dice coefficient and IoU of the serum region segmentation results were 96.36% and 93.02%, respectively. The accuracy and F1-score for classification were both 1. For the grading task, the accuracies were 0.9829, 0.9876, and 0.9526, and Fl-scores were 0.9828, 0.9876, and 0.9520 for hemolysis, icterus, and lipemia, respectively. The proposed method can successfully identify if a sample contains HIL interference and grade the degree of interferent concentration, providing an efficient and feasible method for serum quality control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
酷波er应助逃亡的小狗采纳,获得10
2秒前
3秒前
4秒前
4秒前
4秒前
敖江风云完成签到,获得积分10
7秒前
7秒前
乔乔兔发布了新的文献求助10
7秒前
SSS完成签到,获得积分10
8秒前
猫七发布了新的文献求助10
9秒前
9秒前
YORLAN发布了新的文献求助10
9秒前
10秒前
10秒前
桐桐应助Bob采纳,获得10
10秒前
12秒前
12秒前
12秒前
14秒前
猫七完成签到,获得积分10
14秒前
14秒前
scienceljk发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助乔乔兔采纳,获得10
15秒前
zz发布了新的文献求助10
15秒前
15秒前
16秒前
ww发布了新的文献求助10
16秒前
舟舟发布了新的文献求助10
16秒前
棋子一小枚完成签到,获得积分10
16秒前
17秒前
17秒前
Tyj发布了新的文献求助10
18秒前
18秒前
一人一般发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842477
求助须知:如何正确求助?哪些是违规求助? 3384535
关于积分的说明 10535634
捐赠科研通 3105077
什么是DOI,文献DOI怎么找? 1709969
邀请新用户注册赠送积分活动 823458
科研通“疑难数据库(出版商)”最低求助积分说明 774086