A novel phenomenological model for predicting hysteresis loss of rubber compounds obtained from ultra-large off-the-road tires

磁滞 天然橡胶 现象学模型 材料科学 极限抗拉强度 拉伤 复合材料 法律工程学 数学 统计 工程类 物理 医学 量子力学 内科学
作者
Shaosen Ma,Guangping Huang,Khaled Obaia,Soon Won Moon,Wei Victor Liu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:237 (1): 207-223 被引量:5
标识
DOI:10.1177/09544070211072494
摘要

The objective of this study was to develop a novel phenomenological model that can predict the hysteresis loss of rubber compounds obtained from ultra-large off-the-road (OTR) tires under typical operating conditions at mine sites. To achieve this, first, cyclic tensile tests were conducted on tire tread compounds to derive the experimental results of hysteresis curves, peak stress, residual strain, and hysteresis loss at 6 strain levels, 8 strain rates, and 14 rubber temperatures. Then, referring to these experimental results, a phenomenological model was developed – the HLSRT model (a hysteresis loss model considering strain levels, strain rates, and rubber temperatures). This HLSRT model was generated based on a novel strain energy function that was modified from the traditional Mooney-Rivlin (MR) function, and the model was used to predict the hysteresis loss of rubber compounds in OTR tires. The prediction results show that the HLSRT model estimated the hysteresis loss of tire tread compounds with average and maximum mean absolute percent errors (MAPEs) of 11.2% and 18.6%, respectively, at strain levels ranging from 10% to 100%, strain rates from 10% to 500% s −1 , and rubber temperatures from −30°C to 100°C. These MAPEs were relatively low when compared with previous studies, showing that the HLSRT model has higher prediction accuracy. For the first time, the HLSRT model derived from this study has provided a new approach to predicting the hysteresis loss of OTR tire rubbers to guide the use of OTR tires in truck haulage at mine sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小值钱完成签到,获得积分10
4秒前
年轻迪奥完成签到,获得积分10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
星辰大海应助科研通管家采纳,获得30
7秒前
7秒前
8秒前
8秒前
SciGPT应助酷炫涫采纳,获得10
10秒前
深情安青应助Kane采纳,获得10
10秒前
11秒前
俊逸绮山发布了新的文献求助10
11秒前
iNk应助mmyhn采纳,获得10
12秒前
15秒前
共享精神应助寒冷的曼易采纳,获得10
16秒前
赖雅迪发布了新的文献求助10
16秒前
18秒前
善学以致用应助PanGanlin采纳,获得10
20秒前
20秒前
Kane发布了新的文献求助10
21秒前
玉玊发布了新的文献求助10
21秒前
22秒前
llllx完成签到,获得积分10
22秒前
23秒前
Kane完成签到,获得积分10
26秒前
28秒前
henryhc_完成签到 ,获得积分10
28秒前
Yasong发布了新的文献求助10
28秒前
万能图书馆应助玉玊采纳,获得10
29秒前
29秒前
lin应助wan采纳,获得10
29秒前
张馨元完成签到,获得积分10
31秒前
艾坤铠甲发布了新的文献求助10
32秒前
赖雅迪完成签到,获得积分10
35秒前
39秒前
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796465
求助须知:如何正确求助?哪些是违规求助? 3341712
关于积分的说明 10307381
捐赠科研通 3058317
什么是DOI,文献DOI怎么找? 1678107
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838