Cloud–Edge Collaborative Resource Allocation for Blockchain-Enabled Internet of Things: A Collective Reinforcement Learning Approach

计算机科学 强化学习 云计算 马尔可夫决策过程 分布式计算 移动边缘计算 服务质量 计算机网络 资源配置 能源消耗 资源管理(计算) 边缘设备 服务器 马尔可夫过程 人工智能 生态学 统计 数学 生物 操作系统
作者
Meng Li,Pan Pei,F. Richard Yu,Pengbo Si,Yu Li,Enchang Sun,Yanhua Zhang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (22): 23115-23129 被引量:26
标识
DOI:10.1109/jiot.2022.3185289
摘要

Driven by numerous emerging mobile devices and various Quality-of-Service (QoS) requirements, mobile-edge computing (MEC) has been recognized as a prospective paradigm to promote the computation capability of mobile devices, as well as reduce energy overhead and service latency of applications for the Internet of Things (IoT). However, there are still some open issues in the existing research works: 1) limited network and computing resource; 2) simple or nonintelligent resource management; and 3) ignored security and reliability. In order to cope with these issues, in this article, 6G and blockchain technology are considered to improve network performance and ensure the authenticity of data sharing for the MEC-enabled IoT. Meanwhile, a novel intelligent optimization method named as collective reinforcement learning (CRL) is proposed and introduced, to realize intelligent resource allocation, meet distributed training results sharing, and avoid excessive consumption of system resources. Based on the designed network model, a cloud–edge collaborative resource allocation framework is formulated. By joint optimizing the offloading decision, block interval, and transmission power, it aims to minimize the consumption overheads of system energy and latency. Then, the formulated problem is designed as a Markov decision process, and the optimal strategy can be obtained by the CRL. Some evaluation results reveal that the system performance based on the proposed scheme outperforms other existing schemes obviously.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉书生应助锦哥采纳,获得20
1秒前
2秒前
3秒前
Jemma发布了新的文献求助10
4秒前
无情的听蓉完成签到,获得积分10
5秒前
6秒前
7秒前
莫mo关注了科研通微信公众号
7秒前
深深深海完成签到,获得积分10
7秒前
锦哥完成签到,获得积分10
8秒前
大个应助卡拉蹦蹦采纳,获得10
8秒前
天天天蓝完成签到,获得积分10
9秒前
慕青应助可耐的香露采纳,获得10
10秒前
钠钾蹦发布了新的文献求助10
11秒前
聂凯完成签到,获得积分10
11秒前
伶俐芷珊完成签到,获得积分10
14秒前
zlx完成签到 ,获得积分10
16秒前
任性的蝴蝶完成签到,获得积分10
18秒前
19秒前
keepmoving_12完成签到 ,获得积分10
21秒前
21秒前
21秒前
万能图书馆应助钠钾蹦采纳,获得10
22秒前
23秒前
芷兰丁香发布了新的文献求助10
23秒前
打打应助Jemma采纳,获得10
25秒前
HY2024发布了新的文献求助10
26秒前
zz完成签到 ,获得积分10
27秒前
莫mo发布了新的文献求助10
27秒前
现代的南风完成签到 ,获得积分10
27秒前
Jasper应助www采纳,获得10
27秒前
长情的千风完成签到,获得积分10
28秒前
酷炫涫发布了新的文献求助10
29秒前
29秒前
小蘑菇应助WEAWEA采纳,获得20
29秒前
30秒前
科目三应助xiu-er采纳,获得10
30秒前
mark发布了新的文献求助10
30秒前
站走跑完成签到 ,获得积分10
35秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341693
关于积分的说明 10307203
捐赠科研通 3058271
什么是DOI,文献DOI怎么找? 1678070
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762818