Machine learning-based prediction of massive perioperative allogeneic blood transfusion in cardiac surgery

围手术期 医学 输血 心脏外科 接收机工作特性 曲线下面积 外科 重症监护医学 急诊医学 内科学
作者
Thomas Tschoellitsch,Carl Böck,Tina Tomić Mahečić,Axel Hofmann,Jens Meier
出处
期刊:European Journal of Anaesthesiology [Lippincott Williams & Wilkins]
卷期号:39 (9): 766-773 被引量:12
标识
DOI:10.1097/eja.0000000000001721
摘要

Massive perioperative allogeneic blood transfusion, that is, perioperative transfusion of more than 10 units of packed red blood cells (pRBC), is one of the main contributors to perioperative morbidity and mortality in cardiac surgery. Prediction of perioperative blood transfusion might enable preemptive treatment strategies to reduce risk and improve patient outcomes while reducing resource utilisation. We, therefore, investigated the precision of five different machine learning algorithms to predict the occurrence of massive perioperative allogeneic blood transfusion in cardiac surgery at our centre.Is it possible to predict massive perioperative allogeneic blood transfusion using machine learning?Retrospective, observational study.Single adult cardiac surgery centre in Austria between 01 January 2010 and 31 December 2019.Patients undergoing cardiac surgery.Primary outcome measures were the number of patients receiving at least 10 units pRBC, the area under the curve for the receiver operating characteristics curve, the F1 score, and the negative-predictive (NPV) and positive-predictive values (PPV) of the five machine learning algorithms used to predict massive perioperative allogeneic blood transfusion.A total of 3782 (1124 female:) patients were enrolled and 139 received at least 10 pRBC units. Using all features available at hospital admission, massive perioperative allogeneic blood transfusion could be excluded rather accurately. The best area under the curve was achieved by Random Forests: 0.810 (0.76 to 0.86) with high NPV of 0.99). This was still true using only the eight most important features [area under the curve 0.800 (0.75 to 0.85)].Machine learning models may provide clinical decision support as to which patients to focus on for perioperative preventive treatment in order to preemptively reduce massive perioperative allogeneic blood transfusion by predicting, which patients are not at risk.Johannes Kepler University Ethics Committee Study Number 1091/2021, Clinicaltrials.gov identifier NCT04856618.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耶耶完成签到,获得积分10
2秒前
卑微学术人完成签到 ,获得积分10
2秒前
机智夜安完成签到,获得积分10
3秒前
洪婉馨完成签到 ,获得积分10
7秒前
深情安青应助圆潘采纳,获得10
8秒前
小高今天努力了么完成签到,获得积分10
9秒前
落幕熊猫完成签到,获得积分10
10秒前
无花果应助肖十七采纳,获得10
10秒前
11秒前
脑洞疼应助王红玉采纳,获得10
11秒前
彭于晏应助hu采纳,获得10
11秒前
12秒前
sxcptbtptp发布了新的文献求助10
13秒前
xixi完成签到,获得积分20
13秒前
15秒前
czyzyzy完成签到,获得积分10
16秒前
GSQ发布了新的文献求助10
18秒前
19秒前
应俊完成签到 ,获得积分10
19秒前
19秒前
20秒前
20秒前
木子发布了新的文献求助10
22秒前
JC完成签到,获得积分10
23秒前
acarbose发布了新的文献求助10
23秒前
23秒前
谭蕊完成签到,获得积分10
24秒前
无奈安双完成签到,获得积分10
25秒前
诚心的笑发布了新的文献求助10
25秒前
尤之尤之发布了新的文献求助10
25秒前
26秒前
26秒前
Reine完成签到,获得积分10
27秒前
圆潘发布了新的文献求助10
27秒前
梓榆发布了新的文献求助10
27秒前
28秒前
呼呼完成签到,获得积分10
28秒前
栀夏完成签到,获得积分10
29秒前
GSQ完成签到,获得积分10
30秒前
Reine发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4557542
求助须知:如何正确求助?哪些是违规求助? 3984906
关于积分的说明 12337514
捐赠科研通 3655104
什么是DOI,文献DOI怎么找? 2013567
邀请新用户注册赠送积分活动 1048515
科研通“疑难数据库(出版商)”最低求助积分说明 936911