Machine learning-based prediction of massive perioperative allogeneic blood transfusion in cardiac surgery

围手术期 医学 输血 心脏外科 接收机工作特性 曲线下面积 堆积红细胞 外科 重症监护医学 急诊医学 内科学
作者
Thomas Tschoellitsch,Carl Böck,Tina Tomić Mahečić,Axel Hofmann,Jens Meier
出处
期刊:European Journal of Anaesthesiology [Lippincott Williams & Wilkins]
卷期号:39 (9): 766-773 被引量:9
标识
DOI:10.1097/eja.0000000000001721
摘要

Massive perioperative allogeneic blood transfusion, that is, perioperative transfusion of more than 10 units of packed red blood cells (pRBC), is one of the main contributors to perioperative morbidity and mortality in cardiac surgery. Prediction of perioperative blood transfusion might enable preemptive treatment strategies to reduce risk and improve patient outcomes while reducing resource utilisation. We, therefore, investigated the precision of five different machine learning algorithms to predict the occurrence of massive perioperative allogeneic blood transfusion in cardiac surgery at our centre.Is it possible to predict massive perioperative allogeneic blood transfusion using machine learning?Retrospective, observational study.Single adult cardiac surgery centre in Austria between 01 January 2010 and 31 December 2019.Patients undergoing cardiac surgery.Primary outcome measures were the number of patients receiving at least 10 units pRBC, the area under the curve for the receiver operating characteristics curve, the F1 score, and the negative-predictive (NPV) and positive-predictive values (PPV) of the five machine learning algorithms used to predict massive perioperative allogeneic blood transfusion.A total of 3782 (1124 female:) patients were enrolled and 139 received at least 10 pRBC units. Using all features available at hospital admission, massive perioperative allogeneic blood transfusion could be excluded rather accurately. The best area under the curve was achieved by Random Forests: 0.810 (0.76 to 0.86) with high NPV of 0.99). This was still true using only the eight most important features [area under the curve 0.800 (0.75 to 0.85)].Machine learning models may provide clinical decision support as to which patients to focus on for perioperative preventive treatment in order to preemptively reduce massive perioperative allogeneic blood transfusion by predicting, which patients are not at risk.Johannes Kepler University Ethics Committee Study Number 1091/2021, Clinicaltrials.gov identifier NCT04856618.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ada采纳,获得150
刚刚
zjzjzjzjzj完成签到 ,获得积分10
8秒前
8秒前
cdercder应助miemie66采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
13秒前
cdercder应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
wangdong应助科研通管家采纳,获得10
14秒前
14秒前
不吃香菜完成签到,获得积分10
14秒前
ada发布了新的文献求助150
15秒前
18秒前
wqy完成签到 ,获得积分10
18秒前
儒雅儒雅完成签到,获得积分10
20秒前
科研通AI2S应助甜甜的亦寒采纳,获得10
20秒前
《子非鱼》完成签到,获得积分10
21秒前
同學你該吃藥了完成签到 ,获得积分10
24秒前
24秒前
Shan完成签到 ,获得积分10
26秒前
27秒前
缓慢平蓝发布了新的文献求助20
28秒前
28秒前
魏阳虹发布了新的文献求助10
29秒前
斯文败类应助aaa采纳,获得10
31秒前
加菲丰丰应助Growth采纳,获得20
31秒前
Liu发布了新的文献求助10
31秒前
WWW完成签到 ,获得积分10
32秒前
minifox完成签到,获得积分10
34秒前
缓慢平蓝完成签到,获得积分10
35秒前
霸王龙完成签到 ,获得积分10
35秒前
无相完成签到 ,获得积分10
36秒前
活泼的大船完成签到,获得积分10
37秒前
波波完成签到 ,获得积分10
37秒前
minibearQ完成签到,获得积分10
42秒前
lorentzh完成签到,获得积分10
42秒前
友好的钢笔完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776082
求助须知:如何正确求助?哪些是违规求助? 3321667
关于积分的说明 10206556
捐赠科研通 3036733
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841