Machine learning-based prediction of massive perioperative allogeneic blood transfusion in cardiac surgery

围手术期 医学 输血 心脏外科 接收机工作特性 曲线下面积 外科 重症监护医学 急诊医学 内科学
作者
Thomas Tschoellitsch,Carl Böck,Tina Tomić Mahečić,Axel Hofmann,Jens Meier
出处
期刊:European Journal of Anaesthesiology [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (9): 766-773 被引量:12
标识
DOI:10.1097/eja.0000000000001721
摘要

Massive perioperative allogeneic blood transfusion, that is, perioperative transfusion of more than 10 units of packed red blood cells (pRBC), is one of the main contributors to perioperative morbidity and mortality in cardiac surgery. Prediction of perioperative blood transfusion might enable preemptive treatment strategies to reduce risk and improve patient outcomes while reducing resource utilisation. We, therefore, investigated the precision of five different machine learning algorithms to predict the occurrence of massive perioperative allogeneic blood transfusion in cardiac surgery at our centre.Is it possible to predict massive perioperative allogeneic blood transfusion using machine learning?Retrospective, observational study.Single adult cardiac surgery centre in Austria between 01 January 2010 and 31 December 2019.Patients undergoing cardiac surgery.Primary outcome measures were the number of patients receiving at least 10 units pRBC, the area under the curve for the receiver operating characteristics curve, the F1 score, and the negative-predictive (NPV) and positive-predictive values (PPV) of the five machine learning algorithms used to predict massive perioperative allogeneic blood transfusion.A total of 3782 (1124 female:) patients were enrolled and 139 received at least 10 pRBC units. Using all features available at hospital admission, massive perioperative allogeneic blood transfusion could be excluded rather accurately. The best area under the curve was achieved by Random Forests: 0.810 (0.76 to 0.86) with high NPV of 0.99). This was still true using only the eight most important features [area under the curve 0.800 (0.75 to 0.85)].Machine learning models may provide clinical decision support as to which patients to focus on for perioperative preventive treatment in order to preemptively reduce massive perioperative allogeneic blood transfusion by predicting, which patients are not at risk.Johannes Kepler University Ethics Committee Study Number 1091/2021, Clinicaltrials.gov identifier NCT04856618.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佳期发布了新的文献求助10
刚刚
刚刚
刚刚
邓谷云完成签到,获得积分10
1秒前
体贴怜翠发布了新的文献求助10
1秒前
酷波er应助michen采纳,获得10
1秒前
阎碧空完成签到,获得积分10
1秒前
1秒前
sak1uraM完成签到,获得积分10
1秒前
2秒前
ydd完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
飞飏发布了新的文献求助30
4秒前
蓝心完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
两张发布了新的文献求助10
7秒前
刘岩松发布了新的文献求助10
7秒前
7秒前
奥拉同学发布了新的文献求助10
7秒前
SciGPT应助懵懂的弱采纳,获得10
7秒前
7秒前
zzzzz完成签到,获得积分10
8秒前
Owen应助乐观鑫鹏采纳,获得10
8秒前
8秒前
万能图书馆应助appledan98采纳,获得10
8秒前
mangojuice完成签到,获得积分10
8秒前
Chi发布了新的文献求助10
9秒前
小刘完成签到,获得积分10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
敏感的山彤完成签到,获得积分10
9秒前
jjs完成签到,获得积分10
10秒前
orixero应助忧虑的巧曼采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5758956
求助须知:如何正确求助?哪些是违规求助? 5518438
关于积分的说明 15392719
捐赠科研通 4896143
什么是DOI,文献DOI怎么找? 2633584
邀请新用户注册赠送积分活动 1581565
关于科研通互助平台的介绍 1537189