亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of a Convolutional Neural Network for Multitask Learning to Simultaneously Predict Microvascular Invasion and Vessels that Encapsulate Tumor Clusters in Hepatocellular Carcinoma

医学 肝细胞癌 接收机工作特性 外科肿瘤学 磁共振成像 血管型 卷积神经网络 内科学 病态的 深度学习 放射科 肿瘤科 机器学习 计算机科学
作者
Tongjia Chu,Chen Zhao,Jian Zhang,Kehang Duan,Mingyang Li,Tianqi Zhang,Shengnan Lv,Huan Liu,Wei Feng
出处
期刊:Annals of Surgical Oncology [Springer Science+Business Media]
卷期号:29 (11): 6774-6783 被引量:30
标识
DOI:10.1245/s10434-022-12000-6
摘要

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer death worldwide, and the prognosis remains dismal. In this study, two pivotal factors, microvascular invasion (MVI) and vessels encapsulating tumor clusters (VETC) were preoperatively predicted simultaneously to assess prognosis.A total of 133 HCC patients who underwent surgical resection and preoperative gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) were included. The statuses of MVI and VETC were obtained from the pathological report and CD34 immunohistochemistry, respectively. A three-dimensional convolutional neural network (3D CNN) for single-task learning aimed at MVI prediction and for multitask learning aimed at simultaneous prediction of MVI and VETC was established by using multiphase Gd-EOB-DTPA-enhanced MRI.The 3D CNN for single-task learning achieved an area under receiver operating characteristics curve (AUC) of 0.896 (95% CI: 0.797-0.994). Multitask learning with simultaneous extraction of MVI and VETC features improved the performance of MVI prediction, with an AUC value of 0.917 (95% CI: 0.825-1.000), and achieved an AUC value of 0.860 (95% CI: 0.728-0.993) for the VETC prediction. The multitask learning framework could stratify high- and low-risk groups regarding overall survival (p < 0.0001) and recurrence-free survival (p < 0.0001), revealing that patients with MVI+/VETC+ were associated with poor prognosis.A deep learning framework based on 3D CNN for multitask learning to predict MVI and VETC simultaneously could improve the performance of MVI prediction while assessing the VETC status. This combined prediction can stratify prognosis and enable individualized prognostication in HCC patients before curative resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
28秒前
搜集达人应助吃死你啦啦采纳,获得10
28秒前
李爱国应助吃死你啦啦采纳,获得10
28秒前
思源应助吃死你啦啦采纳,获得10
28秒前
30秒前
招水若离完成签到,获得积分0
34秒前
怡然莞发布了新的文献求助10
35秒前
含蓄文博完成签到 ,获得积分10
41秒前
独特的不尤完成签到,获得积分10
50秒前
可一可再完成签到 ,获得积分10
1分钟前
1分钟前
司空天德发布了新的文献求助10
1分钟前
无花果应助咪咪采纳,获得10
1分钟前
1分钟前
咪咪发布了新的文献求助10
1分钟前
欢欢完成签到 ,获得积分10
2分钟前
两个我完成签到 ,获得积分10
2分钟前
Lywwwwe发布了新的文献求助10
2分钟前
年鱼精完成签到 ,获得积分10
2分钟前
好的昂完成签到,获得积分10
2分钟前
怡然莞完成签到,获得积分20
2分钟前
orixero应助冬嘉采纳,获得10
2分钟前
2分钟前
CipherSage应助咪咪采纳,获得10
3分钟前
4分钟前
孟筱完成签到 ,获得积分10
4分钟前
Criminology34应助温柔芷采纳,获得10
4分钟前
咪咪发布了新的文献求助10
4分钟前
4分钟前
4分钟前
Lywwwwe完成签到,获得积分20
4分钟前
哦豁完成签到 ,获得积分10
4分钟前
lyu完成签到,获得积分10
4分钟前
科目三应助怡然莞采纳,获得10
4分钟前
orixero应助lyu采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
5分钟前
沐雨汐发布了新的文献求助10
5分钟前
大模型应助自然的亦巧采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4800352
求助须知:如何正确求助?哪些是违规求助? 4119172
关于积分的说明 12743096
捐赠科研通 3850518
什么是DOI,文献DOI怎么找? 2121115
邀请新用户注册赠送积分活动 1143399
关于科研通互助平台的介绍 1032958