GrapeGAN: Unsupervised image enhancement for improved grape leaf disease recognition

人工智能 计算机科学 模式识别(心理学) 卷积神经网络 块(置换群论) 像素 发电机(电路理论) 卷积(计算机科学) 鉴别器 图像(数学) 人工神经网络 数学 几何学 电信 功率(物理) 物理 量子力学 探测器
作者
Haibin Jin,Yue Li,Jianfang Qi,Jianying Feng,Dong Tian,Weisong Mu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107055-107055 被引量:36
标识
DOI:10.1016/j.compag.2022.107055
摘要

Grape leaf disease seriously affects the yield and quality of grapes. Limited by actual conditions, collecting a large number of grape disease images is time-consuming and labor intensive, which makes it difficult to train grape disease identification models with excellent performance. Currently, using generative adversarial networks(GANs) to generate grape leaf images is a popular method. Unfortunately, the leaf disease images generated by conventional GANs are not clear enough and the structural integrity is insufficient. To address this problem, a novel architecture named GrapeGAN is proposed in this paper. First, suppress the loss of texture detail information during image generation, a U-Net-like generator is designed by integrating convolutions with residual blocks and reorganization (reorg) methods. Simultaneously, the concatenation (concat) method is used in the generator to retain more scale texture information. Then, to make the generated grape images structurally complete and avoid petiole and leaf structure misalignment, a discriminator is designed with a convolution block and capsule structure. Convolution is used to extract general features, and the capsule structure encodes the spatial information and the probability of the presence of spots. In subsequent experiments on the same raw data, GrapeGAN is compared to WGAN and DCGAN, and the results show that GrapeGAN outperforms the comparative models. Specifically, the Fréchet inception distance (FID) is 5.495, and the neural image assessment (NIMA) is 4.937 ± 1.515. Moreover, four convolutional neural network (CNN) recognition models are used to identify the generated grape leaf diseases. The results demonstrate that the recognition accuracy of grape leaf disease images generated by the GrapeGAN is higher than 86.36%, and the identification accuracy of VGG16 and InceptionV1 achieve 96.13%. In summary, the experimental results show the effectiveness of GrapeGAN, which proves that GrapeGAN can efficiently detect grape leaf disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南风发布了新的文献求助30
2秒前
attention完成签到,获得积分10
3秒前
Shulin发布了新的文献求助10
3秒前
桐桐应助愉快的花卷采纳,获得10
4秒前
关我屁事完成签到 ,获得积分10
4秒前
5秒前
5秒前
6秒前
鲜蘑完成签到,获得积分10
6秒前
沼泽应助健康的肺采纳,获得10
6秒前
7秒前
7秒前
Crest完成签到,获得积分10
7秒前
超级的访天完成签到,获得积分10
8秒前
布吉岛完成签到 ,获得积分10
8秒前
鲜蘑发布了新的文献求助10
9秒前
斯文败类应助雪雪儿采纳,获得10
11秒前
唐泽雪穗应助拼搏从灵采纳,获得10
11秒前
老李猪猪发布了新的文献求助10
12秒前
12秒前
attention发布了新的文献求助10
12秒前
12秒前
13秒前
开心新瑶发布了新的文献求助10
13秒前
14秒前
VDoo完成签到,获得积分10
14秒前
victor应助wwsss采纳,获得10
14秒前
14秒前
蓝色花生豆完成签到,获得积分10
15秒前
铅笔菌完成签到,获得积分10
17秒前
木蒙蒙发布了新的文献求助10
18秒前
18秒前
shiny发布了新的文献求助10
19秒前
Arrebol发布了新的文献求助10
19秒前
ztt完成签到,获得积分10
20秒前
彭于晏应助yoon采纳,获得10
20秒前
21秒前
21秒前
隐形曼青应助C7_采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739366
求助须知:如何正确求助?哪些是违规求助? 4090724
关于积分的说明 12654039
捐赠科研通 3800150
什么是DOI,文献DOI怎么找? 2098475
邀请新用户注册赠送积分活动 1123930
科研通“疑难数据库(出版商)”最低求助积分说明 999140