Quantitative Automated Segmentation of Lipiodol Deposits on Cone-Beam CT Imaging Acquired during Transarterial Chemoembolization for Liver Tumors: A Deep Learning Approach

碘化油 医学 核医学 锥束ct 分割 基本事实 体积热力学 放射科 人工智能 物理 计算机断层摄影术 计算机科学 栓塞 量子力学
作者
Rohil Malpani,Christopher W. Petty,Junlin Yang,Neha Bhatt,Tal Zeevi,Vijay Chockalingam,Rajiv Raju,Alexandra Petukhova-Greenstein,Jessica G. Santana,Todd Schlachter,David C. Madoff,Julius Chapiro,James R. Duncan,MingDe Lin
出处
期刊:Journal of Vascular and Interventional Radiology [Elsevier BV]
卷期号:33 (3): 324-332.e2 被引量:3
标识
DOI:10.1016/j.jvir.2021.12.017
摘要

To show that a deep learning (DL)-based, automated model for Lipiodol (Guerbet Pharmaceuticals, Paris, France) segmentation on cone-beam computed tomography (CT) after conventional transarterial chemoembolization performs closer to the "ground truth segmentation" than a conventional thresholding-based model.This post hoc analysis included 36 patients with a diagnosis of hepatocellular carcinoma or other solid liver tumors who underwent conventional transarterial chemoembolization with an intraprocedural cone-beam CT. Semiautomatic segmentation of Lipiodol was obtained. Subsequently, a convolutional U-net model was used to output a binary mask that predicted Lipiodol deposition. A threshold value of signal intensity on cone-beam CT was used to obtain a Lipiodol mask for comparison. The dice similarity coefficient (DSC), mean squared error (MSE), center of mass (CM), and fractional volume ratios for both masks were obtained by comparing them to the ground truth (radiologist-segmented Lipiodol deposits) to obtain accuracy metrics for the 2 masks. These results were used to compare the model versus the threshold technique.For all metrics, the U-net outperformed the threshold technique: DSC (0.65 ± 0.17 vs 0.45 ± 0.22, P < .001) and MSE (125.53 ± 107.36 vs 185.98 ± 93.82, P = .005). The difference between the CM predicted and the actual CM was 15.31 mm ± 14.63 versus 31.34 mm ± 30.24 (P < .001), with lesser distance indicating higher accuracy. The fraction of volume present ([predicted Lipiodol volume]/[ground truth Lipiodol volume]) was 1.22 ± 0.84 versus 2.58 ± 3.52 (P = .048) for the current model's prediction and threshold technique, respectively.This study showed that a DL framework could detect Lipiodol in cone-beam CT imaging and was capable of outperforming the conventionally used thresholding technique over several metrics. Further optimization will allow for more accurate, quantitative predictions of Lipiodol depositions intraprocedurally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好吃的香菱完成签到,获得积分10
1秒前
1秒前
6秒前
philixc发布了新的文献求助10
7秒前
7秒前
Persist完成签到 ,获得积分10
7秒前
丘比特应助李昕123采纳,获得10
10秒前
css1997完成签到 ,获得积分10
10秒前
zcl发布了新的文献求助10
12秒前
heal发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
汉堡包应助发nature采纳,获得10
15秒前
坦率的乐蕊完成签到 ,获得积分10
16秒前
xgx984发布了新的文献求助10
19秒前
领导范儿应助清欢小适采纳,获得20
19秒前
linluo完成签到 ,获得积分10
20秒前
20秒前
凶狠的苗条关注了科研通微信公众号
21秒前
厉害的露完成签到,获得积分20
22秒前
慕青应助糖呼噜采纳,获得10
22秒前
22秒前
27秒前
27秒前
lxz发布了新的文献求助10
30秒前
我是老大应助kingcoming采纳,获得10
30秒前
科研通AI5应助VISIN采纳,获得100
31秒前
MuMu完成签到 ,获得积分10
31秒前
34秒前
陈泽完成签到,获得积分10
36秒前
科研通AI5应助Wizard采纳,获得10
36秒前
37秒前
5年科研3年毕业完成签到,获得积分10
38秒前
39秒前
NXK发布了新的文献求助10
39秒前
39秒前
40秒前
李玉祥发布了新的文献求助10
42秒前
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669