Process modeling in laser powder bed fusion towards defect detection and quality control via machine learning: The state-of-the-art and research challenges

过程(计算) 机器学习 人工智能 过程控制 计算机科学 过程建模 传感器融合 财产(哲学) 材料科学 质量(理念) 聚类分析 无监督学习 融合 数据挖掘 工艺优化 工程类 操作系统 哲学 认识论 环境工程 语言学
作者
Peng Wang,Yiran Yang,Narges Shayesteh Moghaddam
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:73: 961-984 被引量:96
标识
DOI:10.1016/j.jmapro.2021.11.037
摘要

In recent years, machine learning (ML) techniques have been extensively investigated to strengthen the understanding of the complex process dynamics underlying metal additive manufacturing (AM) processes. This paper presents a comprehensive review and discussion on the latest successful applications of ML to one category of metal AM processes, i.e., laser powder bed fusion or LPBF. This paper will focus on three aspects of LPBF including process modeling, in-situ process monitoring, defect detection, off-line process optimization, and on-line process control. Due to the multi-physics mechanisms of LPBF and associated heterogeneous process sensing, different ML techniques naturally play a significant role in discovering the patterns underlying sensing data. The unsupervised component analysis helps to fuse features extracted from sensing data to facilitate the efficiency of data processing and modeling. Supervised regression techniques are applicable to advancing the causal reasoning of relationship among process parameters, thermal dynamics, structural formation and evolution, and achieved property of printed parts, which is also termed as the process-thermal dynamics-structure-property (PTSP) relationship. Supervised classification and unsupervised clustering techniques can be applied to classify in-situ sensing data to detect defect occurrence and identify defect type (e.g., balling) and severity (e.g., porosity level, crack density). The obtained PTSP relationship can then be used as a basis for off-line optimization of process parameters to achieve better printing quality, while real-time processing of in-situ sensing data through advanced ML techniques (e.g., reinforcement learning) allows online feedback control. Knowledge gaps and future research directions in the three aspects are also identified in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助有人喜欢蓝采纳,获得10
刚刚
1秒前
斯文败类应助平常的蜜粉采纳,获得10
1秒前
刘鑫慧完成签到,获得积分10
1秒前
2秒前
青荣完成签到,获得积分10
2秒前
桐桐应助bigben446采纳,获得10
2秒前
2秒前
2567发布了新的文献求助10
3秒前
whoops完成签到 ,获得积分10
4秒前
zxdnbb发布了新的文献求助10
5秒前
晨晨完成签到 ,获得积分10
5秒前
5秒前
风华正茂发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
科目三应助safari采纳,获得10
8秒前
8秒前
生动梦松应助非而者厚采纳,获得200
8秒前
kydd发布了新的文献求助10
8秒前
8秒前
Akim应助小北采纳,获得10
8秒前
kup发布了新的文献求助10
9秒前
呵呵发布了新的文献求助10
9秒前
xx完成签到,获得积分10
9秒前
DVD完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
科研通AI5应助zhang采纳,获得10
10秒前
小二郎应助顾小白采纳,获得10
10秒前
大个应助能力不多的doctor采纳,获得10
10秒前
11秒前
清醒发布了新的文献求助10
11秒前
lu发布了新的文献求助10
12秒前
充电宝应助罗嘉尔采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4701564
求助须知:如何正确求助?哪些是违规求助? 4069790
关于积分的说明 12583481
捐赠科研通 3769960
什么是DOI,文献DOI怎么找? 2082004
邀请新用户注册赠送积分活动 1109616
科研通“疑难数据库(出版商)”最低求助积分说明 987822