亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Regression Model-Based AMS Circuit Optimization Technique Utilizing Parameterized Operating Condition

计算机科学 电子工程 香料 设计流量 电路设计 混合信号集成电路 计算机工程 集成电路 工程类 操作系统
作者
Jae-Won Nam,Young‐Kyun Cho,Youn Kyu Lee
出处
期刊:Electronics [MDPI AG]
卷期号:11 (3): 408-408 被引量:5
标识
DOI:10.3390/electronics11030408
摘要

An analog and mixed-signal (AMS) circuit that draws on machine learning while using a regression model differs in terms of the design compared to more sophisticated circuit designs. Technology structures that are more advanced than conventional CMOS processes, specifically the fin field-effect transistor (FinFET) and silicon-on-insulator (SOI), have been proposed to provide the higher computation performance required to meet various design specifications. As a result, the latest research on AMS design optimization has enabled enormous resource savings in AMS design procedures but remains limited with regard to reflecting the intended operating conditions in the design parameters. Hereby, we propose what is termed a supervised learning artificial neural network (ANN) as a means by which to define an AMS regression model. This approach allows for rapid searches of complex design dimensions, including variations in performance metrics caused by process–voltage–temperature (PVT) changes. The method also reduces the considerable computation expense compared to that of simulation-program-with-integrated-circuit-emphasis (SPICE) simulations. Hence, the proposed AMS circuit design flow generates highly promising output to meet target requirements while showing an excellent ability to match the design target performance. To verify the potential and promise of our design flow, a successive approximation register analog-to-digital converter (SAR ADC) is designed with a 14 nm process design kit. In order to show the maximum single ADC performance (6-bit∼8-bit resolution and few GS/s conversion speed), we have set three different ADC performance targets. Under all SS/TT/FF corners, ±6.25% supply voltage variation, and temperature variation from −40 ∘C to 80 ∘C, the designed SAR ADC using our proposed AMS circuit optimization flow yields remarkable figure-of-merit energy efficiency (approximately 15 fJ/conversion step).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海贵完成签到,获得积分10
1秒前
wanci应助坦率的尔冬采纳,获得10
2秒前
5秒前
9秒前
11秒前
依米完成签到,获得积分10
12秒前
Jerry发布了新的文献求助10
12秒前
14秒前
11发布了新的文献求助10
18秒前
19秒前
20秒前
哈哈哈完成签到 ,获得积分10
23秒前
uuuu完成签到 ,获得积分10
24秒前
yyy完成签到,获得积分10
24秒前
vicky完成签到 ,获得积分10
28秒前
美满的砖头完成签到,获得积分10
29秒前
Tourist应助jane123采纳,获得10
31秒前
张涛完成签到,获得积分10
33秒前
Akim应助龙行天下采纳,获得10
34秒前
起风了完成签到 ,获得积分10
34秒前
haha完成签到 ,获得积分10
36秒前
ZB完成签到,获得积分10
38秒前
48秒前
50秒前
fffff完成签到,获得积分10
52秒前
52秒前
归尘应助jane123采纳,获得10
57秒前
顾矜应助南风知我意采纳,获得30
59秒前
1分钟前
英姑应助hdnej采纳,获得10
1分钟前
冷酷学姐完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助自然的惜天采纳,获得10
1分钟前
orchid完成签到,获得积分10
1分钟前
1分钟前
倒立的松鼠完成签到,获得积分10
1分钟前
1分钟前
云霞完成签到 ,获得积分10
1分钟前
PAIDAXXXX完成签到,获得积分10
1分钟前
浮游应助jane123采纳,获得10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449646
求助须知:如何正确求助?哪些是违规求助? 4557736
关于积分的说明 14264851
捐赠科研通 4480885
什么是DOI,文献DOI怎么找? 2454582
邀请新用户注册赠送积分活动 1445382
关于科研通互助平台的介绍 1421096