Analyzing the vaccination debate in social media data Pre- and Post-COVID-19 pandemic

大流行 社会化媒体 接种疫苗 人口 代理(统计) 误传 社会距离 2019年冠状病毒病(COVID-19) 舆论 政治学 地理 计算机科学 政治 互联网隐私 公共关系 人口学 医学 病毒学 社会学 计算机安全 万维网 机器学习 传染病(医学专业) 疾病 法学 病理
作者
Qingqing Chen,Andrew Crooks
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:110: 102783-102783 被引量:17
标识
DOI:10.1016/j.jag.2022.102783
摘要

The COVID-19 virus has caused and continues to cause unprecedented impacts on the life trajectories of millions of people globally. Recently, to combat the transmission of the virus, vaccination campaigns around the world have become prevalent. However, while many see such campaigns as positive (e.g., protecting lives), others see them as negative (e.g., the side effects that are not fully understood scientifically), resulting in diverse sentiments towards vaccination campaigns. In addition, the diverse sentiments have seldom been systematically quantified let alone their dynamic changes over space and time. To shed light on this issue, we propose an approach to analyze vaccine sentiments in space and time by using supervised machine learning combined with word embedding techniques. Taking the United States as a test case, we utilize a Twitter dataset (approximately 11.7 million tweets) from January 2015 to July 2021 and measure and map vaccine sentiments (Pro-vaccine, Anti-vaccine, and Neutral) across the nation. In doing so, we can capture the heterogeneous public opinions within social media discussions regarding vaccination among states. Results show how positive sentiment in social media has a strong correlation with the actual vaccinated population. Furthermore, we introduce a simple ratio between Anti and Pro-vaccine as a proxy to quantify vaccine hesitancy and show how our results align with other traditional survey approaches. The proposed approach illustrates the potential to monitor the dynamics of vaccine opinion distribution online, which we hope, can be helpful to explain vaccination rates for the ongoing COVID-19 pandemic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
玄金道人完成签到 ,获得积分10
5秒前
5秒前
牵挂发布了新的文献求助10
6秒前
大猫完成签到,获得积分10
8秒前
10秒前
10秒前
13秒前
ho应助科研通管家采纳,获得10
15秒前
老福贵儿应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
VDC应助科研通管家采纳,获得30
15秒前
浮游应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
老福贵儿应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
老福贵儿应助科研通管家采纳,获得10
16秒前
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
Criminology34应助石头采纳,获得10
20秒前
武子阳完成签到 ,获得积分10
20秒前
邢夏之完成签到 ,获得积分10
20秒前
OE完成签到,获得积分10
20秒前
泯珉发布了新的文献求助10
20秒前
20秒前
21秒前
Csy完成签到,获得积分10
23秒前
23秒前
24秒前
英吉利25发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295962
求助须知:如何正确求助?哪些是违规求助? 4445317
关于积分的说明 13835911
捐赠科研通 4329946
什么是DOI,文献DOI怎么找? 2376831
邀请新用户注册赠送积分活动 1372199
关于科研通互助平台的介绍 1337534