Associations between organophosphate esters metabolites and sleep disorder and trouble sleeping in adults: a machine-learning approach

有机磷 生态毒理学 睡眠(系统调用) 心理学 精神科 毒理 生物 生态学 计算机科学 操作系统 杀虫剂
作者
Xiao Kang,Jingxian Li,Jia Luo,Dongfeng Zhang
出处
期刊:Environmental Science and Pollution Research [Springer Science+Business Media]
卷期号:29 (44): 67287-67300 被引量:8
标识
DOI:10.1007/s11356-022-20596-1
摘要

Organophosphate esters (OPEs) are used widely as flame retardants and plasticizers. However, the associations between OPEs metabolites and sleep outcomes (sleep disorder and trouble sleeping) remain unknown. Data utilized in this cross-sectional study was from the National Health and Nutrition Examination Survey 2013–2014, including 1393 adults aged ≥ 20 years. We conducted weighted logistic regression and Bayesian kernel machine regression (BKMR) models to analyze the associations between OPEs metabolites and sleep outcomes. We included data from 2011 to 2012 cycle in our sensitivity analysis to explore the association further. Logistic regression model presented a significant positive association between diphenyl phosphate (DPHP) and sleep disorder in all participants (odds ratio (95% confidence interval) for the second quartile was 2.46 (1.85, 3.28)). We observed positive associations between OPEs metabolites and sleep outcomes in males. Among females, no significant association was observed in the logistic model. BKMR presented that dibutyl phosphate (DBUP) was the relatively important exposure. There was a positive association between OPEs metabolites mixture and trouble sleeping. Univariable exposure–response functions demonstrated U-shaped associations between DBUP and sleep outcomes, while bis(2-chloroethyl) phosphate (BCEP) was associated with sleep disorder negatively in females. No substantial changes appeared in the results after including the data from 2011 to 2012 cycle. This current study indicated that OPEs metabolites might be associated with sleep disorder and trouble sleeping, and the associations seemed to be sex-dependent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
maox1aoxin应助岳小龙采纳,获得50
1秒前
Emma发布了新的文献求助10
1秒前
ineffable完成签到,获得积分20
2秒前
竹9发布了新的文献求助50
2秒前
Kiki发布了新的文献求助10
3秒前
3秒前
Akim应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
oxear应助Aurora采纳,获得10
4秒前
4秒前
科目三应助大力音响采纳,获得10
5秒前
maox1aoxin应助沉静的语堂采纳,获得30
6秒前
7秒前
wonder123发布了新的文献求助10
7秒前
Lucas应助林宇采纳,获得10
8秒前
小二郎应助白驹过隙采纳,获得10
9秒前
10秒前
10秒前
复成完成签到 ,获得积分10
10秒前
涵涵涵完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
西伯利亚彪悍前妻完成签到 ,获得积分20
12秒前
李健应助荆轲刺秦王采纳,获得10
12秒前
15秒前
哦哟发布了新的文献求助20
15秒前
16秒前
烟花应助ebby采纳,获得10
16秒前
武装大脑完成签到,获得积分10
17秒前
17秒前
啦啦啦发布了新的文献求助10
17秒前
Desmond应助zorro3574采纳,获得10
17秒前
18秒前
一帆风顺发布了新的文献求助10
18秒前
深情安青应助漫漫长夜采纳,获得10
20秒前
20秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Synthesis of Solid Catalysts 200
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832896
求助须知:如何正确求助?哪些是违规求助? 3375313
关于积分的说明 10488554
捐赠科研通 3094944
什么是DOI,文献DOI怎么找? 1704149
邀请新用户注册赠送积分活动 819788
科研通“疑难数据库(出版商)”最低求助积分说明 771623