Investigate the Neuro Mechanisms of Stereoscopic Visual Fatigue

楔前 独立成分分析 虚拟现实 计算机科学 脑电图 立体视 功能磁共振成像 神经科学 心理学 人工智能
作者
Kang Yue,Mei Guo,Yue Liu,Haochen Hu,Kai Lü,Shanshan Chen,Danli Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 2963-2973 被引量:6
标识
DOI:10.1109/jbhi.2022.3161083
摘要

Stereoscopic visual fatigue (SVF) due to prolonged immersion in the virtual environment can lead to negative user experience, thus hindering the development of virtual reality (VR) industry. Previous studies have focused on investigating the evaluation indicators associated with SVF, while few studies have been conducted to reveal the underlying neural mechanism, especially in VR applications. In this paper, a modified Go/NoGo paradigm was adopted to induce SVF in VR environment with Go trials for maintaining participants' attention and NoGo trials for investigating the neural effects under SVF. Random dot stereograms (RDSs) with 11 disparities were presented to evoke the depth-related visual evoked potentials (DVEPs) during 64-channel EEG recordings. EEG datasets collected from 15 participants in NoGo trials were selected to conduct individual processing and group analysis, in which the characteristics of the DVEPs components for various fatigue degrees were compared and independent components were clustered to explore the original cortex areas related to SVF. Point-by-point permutation statistics revealed that DVEPs sample points from 230 ms to 280 ms (component P2) in most brain areas changed significantly when SVF increased. Additionally, independent component analysis (ICA) identified that component P2 which originated from posterior cingulate cortex and precuneus, was associated statistically with SVF. We believe that SVF is rather a conscious status concerning the changes of self-awareness or self-location awareness than the performance reduction of retinal image processing. Moreover, we suggest that indicators representing higher conscious state may be a better indicator for SVF evaluation in VR environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清颜完成签到 ,获得积分10
刚刚
可乐味橘子完成签到,获得积分10
7秒前
yes完成签到 ,获得积分10
8秒前
zhilianghui0807完成签到 ,获得积分10
11秒前
游01完成签到 ,获得积分10
13秒前
14秒前
夏明明完成签到,获得积分10
14秒前
无花果应助英俊延恶采纳,获得10
17秒前
19秒前
烙饼完成签到,获得积分10
20秒前
双青豆完成签到 ,获得积分10
21秒前
英勇凝旋完成签到,获得积分10
24秒前
小杨完成签到 ,获得积分10
26秒前
even完成签到 ,获得积分10
27秒前
宇宇宇c完成签到,获得积分10
29秒前
fufufu123完成签到 ,获得积分10
30秒前
星辰大海应助可乐味橘子采纳,获得10
32秒前
偷得浮生半日闲完成签到 ,获得积分10
34秒前
wanci应助daladidala采纳,获得10
35秒前
cwq完成签到 ,获得积分10
36秒前
淡然的芷荷完成签到 ,获得积分10
36秒前
小高同学完成签到,获得积分10
39秒前
xiaofan应助Bismarck采纳,获得10
39秒前
guangyu完成签到,获得积分10
42秒前
42秒前
haonanchen完成签到,获得积分10
47秒前
漏脑之鱼完成签到 ,获得积分10
47秒前
daladidala发布了新的文献求助10
47秒前
张立佳完成签到 ,获得积分10
48秒前
xyzlancet完成签到,获得积分10
48秒前
54秒前
heavenhorse完成签到,获得积分0
54秒前
Nick应助雪山飞龙采纳,获得30
54秒前
Ting完成签到 ,获得积分10
58秒前
RYAN完成签到 ,获得积分10
59秒前
乐人完成签到 ,获得积分10
1分钟前
柠檬完成签到 ,获得积分10
1分钟前
迟迟完成签到 ,获得积分10
1分钟前
万事屋完成签到 ,获得积分10
1分钟前
Present完成签到,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843292
求助须知:如何正确求助?哪些是违规求助? 3385599
关于积分的说明 10540781
捐赠科研通 3106177
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823825
科研通“疑难数据库(出版商)”最低求助积分说明 774308