Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion

人工智能 学习迁移 计算机科学 判别式 卷积神经网络 深度学习 试验装置 RGB颜色模型 模式识别(心理学) 接收机工作特性 匹配(统计) 人工神经网络 机器学习 数学 统计
作者
Michał Byra,Michael Y. Galperin,Haydee Ojeda‐Fournier,Linda K. Olson,M K O'Boyle,Christopher Comstock,Michael P. André
出处
期刊:Medical Physics [Wiley]
卷期号:46 (2): 746-755 被引量:246
标识
DOI:10.1002/mp.13361
摘要

Purpose We propose a deep learning‐based approach to breast mass classification in sonography and compare it with the assessment of four experienced radiologists employing breast imaging reporting and data system 4th edition lexicon and assessment protocol. Methods Several transfer learning techniques are employed to develop classifiers based on a set of 882 ultrasound images of breast masses. Additionally, we introduce the concept of a matching layer. The aim of this layer is to rescale pixel intensities of the grayscale ultrasound images and convert those images to red, green, blue ( RGB ) to more efficiently utilize the discriminative power of the convolutional neural network pretrained on the ImageNet dataset. We present how this conversion can be determined during fine‐tuning using back‐propagation. Next, we compare the performance of the transfer learning techniques with and without the color conversion. To show the usefulness of our approach, we additionally evaluate it using two publicly available datasets. Results Color conversion increased the areas under the receiver operating curve for each transfer learning method. For the better‐performing approach utilizing the fine‐tuning and the matching layer, the area under the curve was equal to 0.936 on a test set of 150 cases. The areas under the curves for the radiologists reading the same set of cases ranged from 0.806 to 0.882. In the case of the two separate datasets, utilizing the proposed approach we achieved areas under the curve of around 0.890. Conclusions The concept of the matching layer is generalizable and can be used to improve the overall performance of the transfer learning techniques using deep convolutional neural networks. When fully developed as a clinical tool, the methods proposed in this paper have the potential to help radiologists with breast mass classification in ultrasound.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taro完成签到 ,获得积分10
刚刚
Ava应助liekkas采纳,获得10
刚刚
CNYDNZB发布了新的文献求助10
1秒前
研友_8QyXr8完成签到,获得积分10
2秒前
别当真完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
张滢蕊发布了新的文献求助10
3秒前
4秒前
解愚志给nn的求助进行了留言
4秒前
亚亚发布了新的文献求助10
5秒前
zpz发布了新的文献求助10
5秒前
5秒前
乐乐应助《子非鱼》采纳,获得10
5秒前
慈祥的丹寒完成签到 ,获得积分10
6秒前
6秒前
安诺完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
冰冰发布了新的文献求助10
8秒前
乐乐应助做好胶水采纳,获得10
8秒前
9秒前
10秒前
10秒前
张滢蕊完成签到,获得积分10
11秒前
11秒前
英俊的铭应助QYPANG采纳,获得10
12秒前
12秒前
ZZY发布了新的文献求助10
13秒前
半圆亻发布了新的文献求助10
14秒前
乐乐乐完成签到,获得积分20
15秒前
田様应助midoli采纳,获得10
15秒前
15秒前
sweet0225完成签到 ,获得积分10
16秒前
16秒前
18秒前
18秒前
18秒前
18秒前
mm完成签到 ,获得积分10
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213