亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm

前磨牙 卷积神经网络 接收机工作特性 深度学习 人工智能 计算机科学 臼齿 曲线下面积 预处理器 诊断准确性 射线照相术 模式识别(心理学) 预测值 算法 医学 机器学习 牙科 放射科 内科学 药代动力学
作者
Jae‐Hong Lee,Do‐Hyung Kim,Seong‐Nyum Jeong,Seong‐Ho Choi
出处
期刊:Journal of Dentistry [Elsevier BV]
卷期号:77: 106-111 被引量:757
标识
DOI:10.1016/j.jdent.2018.07.015
摘要

Deep convolutional neural networks (CNNs) are a rapidly emerging new area of medical research, and have yielded impressive results in diagnosis and prediction in the fields of radiology and pathology. The aim of the current study was to evaluate the efficacy of deep CNN algorithms for detection and diagnosis of dental caries on periapical radiographs. A total of 3000 periapical radiographic images were divided into a training and validation dataset (n = 2400 [80%]) and a test dataset (n = 600 [20%]). A pre-trained GoogLeNet Inception v3 CNN network was used for preprocessing and transfer learning. The diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, and area under the curve (AUC) were calculated for detection and diagnostic performance of the deep CNN algorithm. The diagnostic accuracies of premolar, molar, and both premolar and molar models were 89.0% (80.4–93.3), 88.0% (79.2–93.1), and 82.0% (75.5–87.1), respectively. The deep CNN algorithm achieved an AUC of 0.917 (95% CI 0.860–0.975) on premolar, an AUC of 0.890 (95% CI 0.819–0.961) on molar, and an AUC of 0.845 (95% CI 0.790–0.901) on both premolar and molar models. The premolar model provided the best AUC, which was significantly greater than those for other models (P < 0.001). This study highlighted the potential utility of deep CNN architecture for the detection and diagnosis of dental caries. A deep CNN algorithm provided considerably good performance in detecting dental caries in periapical radiographs. Deep CNN algorithms are expected to be among the most effective and efficient methods for diagnosing dental caries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
17秒前
啦啦啦大萝卜完成签到,获得积分10
30秒前
37秒前
Lesley完成签到 ,获得积分10
41秒前
46秒前
47秒前
testmanfuxk完成签到,获得积分10
47秒前
51秒前
56秒前
冷静新烟发布了新的文献求助10
56秒前
1分钟前
1分钟前
1分钟前
jiaweiluo发布了新的文献求助10
1分钟前
临渊发布了新的文献求助10
1分钟前
Ysn完成签到,获得积分10
1分钟前
1分钟前
弎夜完成签到,获得积分10
1分钟前
1分钟前
英勇梦易发布了新的文献求助10
1分钟前
彭于晏应助临渊采纳,获得10
1分钟前
1分钟前
梨子完成签到,获得积分10
1分钟前
Ysn发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
上官若男应助冷静新烟采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
小吴发布了新的文献求助10
2分钟前
追寻的怜容完成签到,获得积分10
2分钟前
2分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1018
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4080486
求助须知:如何正确求助?哪些是违规求助? 3619915
关于积分的说明 11486342
捐赠科研通 3335735
什么是DOI,文献DOI怎么找? 1833802
邀请新用户注册赠送积分活动 902768
科研通“疑难数据库(出版商)”最低求助积分说明 821313