AdaBoost Ensemble Correction Models for TDDFT Calculated Absorption Energies

阿达布思 含时密度泛函理论 人工智能 均方误差 支持向量机 激发态 密度泛函理论 计算机科学 机器学习 物理 数学 统计 原子物理学 量子力学
作者
Jingxia Cui,Wenze Li,Chao Fang,Shunting Su,Jiaoyang Luan,Ting Gao,Lihong Hu,Yinghua Lu,GuanHua Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 38397-38406 被引量:16
标识
DOI:10.1109/access.2019.2905928
摘要

Molecular excited states are important for molecular optical properties, which can be feasibly explored by quantum chemical calculations. However, the computation is highly demanding due to their complicated characteristic features. Therefore, high accuracy and unambiguous descriptions are strongly desired for excited state investigations. This paper proposes accurate, robust, and efficient ensemble correction models for absorption calculations with the most used quantum chemical method, time-dependent density functional theory (TDDFT). Models are built by AdaBoost framework with both weak machine learning: support vector machine (SVM), general regression neural network (GRNN), and an ensemble learning: the random forest (RF) regression method. With the models, the low accuracy calculations, TDDFT calculated absorption energies (λ max ) for 433 organic molecules with the minimum basis set STO-3G, are significantly improved. The mean absolute error (MAE) and the root mean square error (RMSE) of the calculated λmax are reduced from 0.62 and 0.79 eV to 0.11 and 0.14 eV, respectively. The validation parameters of the proposed correction model can reach up to R 2 (0.97), Q 2 (0.98), and Q cv 2 (0.99), which suggests the great goodness-of-fit and predictability. This investigation illustrates that the proposed ensemble correction models by sophisticated algorithms are highly efficient and accurate. Therefore, it may serve as an alternative tool to establish good correction models for TDDFT absorption calculations, which could significantly improve the accuracy of TDDFT calculations and extend machine learning algorithms on other feature calculations of excited states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英俊的铭应助嘎嘎嘎嘎采纳,获得10
2秒前
武海素完成签到,获得积分20
2秒前
烟花应助HE采纳,获得10
3秒前
HY完成签到,获得积分10
3秒前
大方的荟发布了新的文献求助10
3秒前
3秒前
4秒前
小团子发布了新的文献求助10
4秒前
4秒前
没有花活儿完成签到,获得积分10
4秒前
落后的小蕊完成签到,获得积分10
5秒前
LL完成签到 ,获得积分10
5秒前
6秒前
大胆的灰狼完成签到,获得积分10
6秒前
zh完成签到 ,获得积分10
6秒前
6秒前
爱丽丝敏发布了新的文献求助10
7秒前
kk完成签到,获得积分10
7秒前
7秒前
张鹏波发布了新的文献求助10
8秒前
Newky发布了新的文献求助10
8秒前
科研通AI5应助yi采纳,获得10
9秒前
9秒前
安详怜蕾发布了新的文献求助10
9秒前
李帅发布了新的文献求助10
9秒前
9秒前
无禮发布了新的文献求助10
10秒前
科目三应助华东小可爱采纳,获得10
10秒前
11秒前
华仔应助towerman采纳,获得10
11秒前
12秒前
好好学习发布了新的文献求助10
12秒前
Yaner发布了新的文献求助20
12秒前
wujun发布了新的文献求助10
13秒前
烟花应助匆匆采纳,获得10
13秒前
昵称发布了新的文献求助10
13秒前
科研通AI5应助lily采纳,获得10
13秒前
14秒前
药学小男孩完成签到,获得积分10
14秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819216
求助须知:如何正确求助?哪些是违规求助? 3362298
关于积分的说明 10416337
捐赠科研通 3080487
什么是DOI,文献DOI怎么找? 1694511
邀请新用户注册赠送积分活动 814686
科研通“疑难数据库(出版商)”最低求助积分说明 768388