亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semi-Supervised Learning With Deep Embedded Clustering for Image Classification and Segmentation

计算机科学 人工智能 聚类分析 卷积神经网络 模式识别(心理学) 深度学习 分割 特征学习 水准点(测量) 上下文图像分类 机器学习 杠杆(统计) 特征(语言学) 图像分割 半监督学习 特征提取 标记数据 图像(数学) 语言学 哲学 大地测量学 地理
作者
Joseph Enguehard,Peter O’Halloran,Ali Gholipour
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 11093-11104 被引量:86
标识
DOI:10.1109/access.2019.2891970
摘要

Deep neural networks usually require large labeled datasets to construct accurate models; however, in many real-world scenarios, such as medical image segmentation, labelling data is a time-consuming and costly human (expert) intelligent task. Semi-supervised methods leverage this issue by making use of a small labeled dataset and a larger set of unlabeled data. In this article, we present a flexible framework for semi-supervised learning that combines the power of supervised methods that learn feature representations using state-of-the-art deep convolutional neural networks with the deep embedded clustering algorithm that assigns data points to clusters based on their probability distributions and feature representations learned by the networks. Our proposed semi-supervised learning algorithm based on deep embedded clustering (SSLDEC) learns feature representations via iterations by alternatively using labeled and unlabeled data points and computing target distributions from predictions. During this iterative procedure the algorithm uses labeled samples to keep the model consistent and tuned with labeling, as it simultaneously learns to improve feature representation and predictions. SSLDEC requires few hyper-parameters and thus does not need large labeled validation sets, which addresses one of the main limitations of many semi-supervised learning algorithms. It is also flexible and can be used with many state-of-the-art deep neural network configurations for image classification and segmentation tasks. To this end, we implemented and tested our approach on benchmark image classification tasks as well as in a challenging medical image segmentation scenario. In benchmark classification tasks, SSLDEC outperformed several state-of-the-art semi-supervised learning methods, achieving 0.46% error on MNIST with 1000 labeled points, and 4.43% error on SVHN with 500 labeled points. In the iso-intense infant brain MRI tissue segmentation task, we implemented SSLDEC on a 3D densely connected fully convolutional neural network where we achieved significant improvement over supervised-only training as well as a semi-supervised method based on pseudo-labelling. Our results show that SSLDEC can be effectively used to reduce the need for costly expert annotations, enhancing applications such as automatic medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
7秒前
12秒前
1.1发布了新的文献求助30
17秒前
eeven完成签到 ,获得积分10
26秒前
科研通AI2S应助毛豆爸爸采纳,获得30
40秒前
FashionBoy应助刘国建郭菱香采纳,获得10
57秒前
范博发布了新的文献求助10
1分钟前
小二郎应助刘国建郭菱香采纳,获得10
1分钟前
欧皇发布了新的文献求助10
1分钟前
jayyong完成签到,获得积分10
1分钟前
2分钟前
jayyong发布了新的文献求助10
2分钟前
聪明怜阳发布了新的文献求助10
2分钟前
欧皇发布了新的文献求助10
2分钟前
coolkid应助聪明怜阳采纳,获得10
2分钟前
斯文败类应助聪明怜阳采纳,获得10
2分钟前
聪明怜阳完成签到,获得积分10
2分钟前
2分钟前
大模型应助tufei采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Lucas应助leo采纳,获得30
3分钟前
SciGPT应助江小霜采纳,获得10
4分钟前
4分钟前
江小霜发布了新的文献求助10
4分钟前
4分钟前
tufei发布了新的文献求助10
4分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
leo发布了新的文献求助30
5分钟前
FashionBoy应助leo采纳,获得30
5分钟前
儒雅的天问完成签到,获得积分10
6分钟前
领导范儿应助可达鸭采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4443489
求助须知:如何正确求助?哪些是违规求助? 3914503
关于积分的说明 12154657
捐赠科研通 3562765
什么是DOI,文献DOI怎么找? 1955930
邀请新用户注册赠送积分活动 995618
科研通“疑难数据库(出版商)”最低求助积分说明 890962