Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities

RGB颜色模型 人工智能 计算机视觉 遥感 计算机科学 信号(编程语言) 衰减 地理 光学 物理 程序设计语言
作者
Jordi Gené-Mola,Verónica Vilaplana,Joan R. Rosell-Polo,Josep Ramon Morros,Javier Ruiz‐Hidalgo,Eduard Gregorio
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:162: 689-698 被引量:150
标识
DOI:10.1016/j.compag.2019.05.016
摘要

Fruit detection and localization will be essential for future agronomic management of fruit crops, with applications in yield prediction, yield mapping and automated harvesting. RGB-D cameras are promising sensors for fruit detection given that they provide geometrical information with color data. Some of these sensors work on the principle of time-of-flight (ToF) and, besides color and depth, provide the backscatter signal intensity. However, this radiometric capability has not been exploited for fruit detection applications. This work presents the KFuji RGB-DS database, composed of 967 multi-modal images containing a total of 12,839 Fuji apples. Compilation of the database allowed a study of the usefulness of fusing RGB-D and radiometric information obtained with Kinect v2 for fruit detection. To do so, the signal intensity was range corrected to overcome signal attenuation, obtaining an image that was proportional to the reflectance of the scene. A registration between RGB, depth and intensity images was then carried out. The Faster R-CNN model was adapted for use with five-channel input images: color (RGB), depth (D) and range-corrected intensity signal (S). Results show an improvement of 4.46% in F1-score when adding depth and range-corrected intensity channels, obtaining an F1-score of 0.898 and an AP of 94.8% when all channels are used. From our experimental results, it can be concluded that the radiometric capabilities of ToF sensors give valuable information for fruit detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助dongbei采纳,获得10
1秒前
古往今来发布了新的文献求助10
1秒前
可爱的函函应助charm采纳,获得10
1秒前
Akim应助Barry采纳,获得10
2秒前
cw777发布了新的文献求助10
2秒前
grant发布了新的文献求助10
3秒前
汪洋完成签到,获得积分10
3秒前
陈晚拧完成签到 ,获得积分10
5秒前
5秒前
5秒前
慧hui完成签到,获得积分20
6秒前
harri完成签到,获得积分10
6秒前
6秒前
7秒前
嘿猪聪明完成签到,获得积分10
7秒前
7秒前
lmh123发布了新的文献求助20
7秒前
ming完成签到,获得积分20
7秒前
7秒前
yl-h完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
嘉嘉sone发布了新的文献求助10
9秒前
9秒前
10秒前
好好搞科研完成签到 ,获得积分10
10秒前
大模型应助高高的坤采纳,获得10
10秒前
芋米板板完成签到,获得积分10
10秒前
古往今来完成签到,获得积分10
10秒前
10秒前
11秒前
mouse0821发布了新的文献求助10
11秒前
phoenix完成签到 ,获得积分10
11秒前
科研通AI6应助1007采纳,获得10
11秒前
zhan发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
lin发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5169051
求助须知:如何正确求助?哪些是违规求助? 4360406
关于积分的说明 13576259
捐赠科研通 4207232
什么是DOI,文献DOI怎么找? 2307425
邀请新用户注册赠送积分活动 1306991
关于科研通互助平台的介绍 1253616