Extracellular electron transfer features of Gram-positive bacteria

电子转移 化学 细胞外 微生物燃料电池 纳米技术 细菌 生物膜 生物传感器 生物物理学 化学物理 电极 生物化学 材料科学 生物 有机化学 物理化学 阳极 遗传学
作者
Galina Pankratova,Lars Hederstedt,Lo Gorton
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1076: 32-47 被引量:110
标识
DOI:10.1016/j.aca.2019.05.007
摘要

Electroactive microorganisms possess the unique ability to transfer electrons to or from solid phase electron conductors, e.g., electrodes or minerals, through various physiological mechanisms. The processes are commonly known as extracellular electron transfer and broadly harnessed in microbial electrochemical systems, such as microbial biosensors, microbial electrosynthesis, or microbial fuel cells. Apart from a few model microorganisms, the nature of the microbe-electrode conductive interaction is poorly understood for most of the electroactive species. The interaction determines the efficiency and a potential scaling up of bioelectrochemical systems. Gram-positive bacteria generally have a thick electron non-conductive cell wall and are believed to exhibit weak extracellular electron shuttling activity. This review highlights reported research accomplishments on electroactive Gram-positive bacteria. The use of electron-conducting polymers as mediators is considered as one promising strategy to enhance the electron transfer efficiency up to application scale. In view of the recent progress in understanding the molecular aspects of the extracellular electron transfer mechanisms of Enterococcus faecalis, the electron transfer properties of this bacterium are especially focused on. Fundamental knowledge on the nature of microbial extracellular electron transfer and its possibilities can provide insight in interspecies electron transfer and biogeochemical cycling of elements in nature. Additionally, a comprehensive understanding of cell-electrode interactions may help in overcoming insufficient electron transfer and restricted operational performance of various bioelectrochemical systems and facilitate their practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
汤若山完成签到,获得积分10
1秒前
李健应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
开心完成签到,获得积分10
1秒前
四夕完成签到,获得积分10
1秒前
星雪完成签到,获得积分10
2秒前
八对完成签到,获得积分10
2秒前
坦率雁卉完成签到,获得积分10
2秒前
朱湋帆完成签到 ,获得积分10
2秒前
乾明少侠完成签到 ,获得积分10
3秒前
zhongbo发布了新的文献求助10
3秒前
4秒前
skylee9527完成签到,获得积分10
4秒前
5秒前
充电宝应助ke采纳,获得10
5秒前
5秒前
7秒前
代啊晴完成签到,获得积分10
7秒前
7秒前
Owen应助愉快的白桃采纳,获得10
7秒前
称心采枫完成签到 ,获得积分10
7秒前
8秒前
害羞的妙海完成签到 ,获得积分10
8秒前
沛沛发布了新的文献求助10
8秒前
9秒前
liusx123发布了新的文献求助10
9秒前
9秒前
10秒前
开放磬完成签到,获得积分10
11秒前
7011z发布了新的文献求助10
11秒前
12秒前
光亮的蓝天完成签到,获得积分10
12秒前
Anna完成签到,获得积分10
13秒前
13秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Yaws' Handbook of Antoine coefficients for vapor pressure 500
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2551807
求助须知:如何正确求助?哪些是违规求助? 2177745
关于积分的说明 5611071
捐赠科研通 1898654
什么是DOI,文献DOI怎么找? 947979
版权声明 565534
科研通“疑难数据库(出版商)”最低求助积分说明 504257