纳米棒
等离子体子
X射线光电子能谱
材料科学
表面等离子体子
光催化
局域表面等离子体子
氯铂酸
光化学
铂金
纳米技术
化学
光电子学
化学工程
催化作用
工程类
生物化学
作者
Gregory T. Forcherio,Jonathan Boltersdorf,Joshua P. McClure,Asher C. Leff,David R. Baker,Cynthia A. Lundgren
出处
期刊:Meeting abstracts
日期:2018-07-23
卷期号:MA2018-02 (54): 1933-1933
标识
DOI:10.1149/ma2018-02/54/1933
摘要
Targeted, reductive photodeposition of catalytic metals via plasmonic hot electrons excited on an electrode is a promising, economical approach to manufacturing plasmon-sensitized photoelectrodes for catalysis applications. This work examines liquid-phase, anisotropic photodeposition of Pt(0) co-catalysts from chloroplatinic acid, Pt(IV), onto suspended Au nanorods under localized surface plasmon (LSP) excitation. Photochemical Pt(0) nucleation is initiated by plasmonic hot electrons, which migrate to the Au surface according to the plasmon polarity. In situ, time-resolved absorbance monitoring of the photochemical reaction elucidated Au nanorod surface functionalization with Pt(IV), Pt(0) growth kinetics under Au LSP excitation, and the evolving light-matter interactions. Energy dispersive spectroscopy (EDS) mappings show preferential Pt(0) deposition on the Au nanorod ends, consistent with the laser-induced LSP dipoles. Discrete dipole approximation (DDA) of Maxwell’s equations corroborated measured optical responses and allows a priori design of hot electron energetics. Electronic valence band structure of the Pt-functionalized Au nanorod was measured by x-ray photoelectron spectroscopy (XPS) and calculated by density functional theory (DFT) to enumerate the energy distribution of carriers accessible for surface chemistry. Together, these techniques and analyses accelerate development of plasmon-sensitized photoelectrodes for solar fuel generation. Figure 1
科研通智能强力驱动
Strongly Powered by AbleSci AI