Machine learning analyses can differentiate meningioma grade by features on magnetic resonance imaging

逻辑回归 医学 磁共振成像 脑膜瘤 接收机工作特性 人工智能 机器学习 朴素贝叶斯分类器 支持向量机 放射科 核医学 计算机科学
作者
Andrew T. Hale,David P. Stonko,Li Wang,Megan K. Strother,Lola B. Chambless
出处
期刊:Neurosurgical Focus [American Association of Neurological Surgeons]
卷期号:45 (5): E4-E4 被引量:57
标识
DOI:10.3171/2018.8.focus18191
摘要

OBJECTIVEPrognostication and surgical planning for WHO grade I versus grade II meningioma requires thoughtful decision-making based on radiographic evidence, among other factors. Although conventional statistical models such as logistic regression are useful, machine learning (ML) algorithms are often more predictive, have higher discriminative ability, and can learn from new data. The authors used conventional statistical models and an array of ML algorithms to predict atypical meningioma based on radiologist-interpreted preoperative MRI findings. The goal of this study was to compare the performance of ML algorithms to standard statistical methods when predicting meningioma grade.METHODSThe cohort included patients aged 18-65 years with WHO grade I (n = 94) and II (n = 34) meningioma in whom preoperative MRI was obtained between 1998 and 2010. A board-certified neuroradiologist, blinded to histological grade, interpreted all MR images for tumor volume, degree of peritumoral edema, presence of necrosis, tumor location, presence of a draining vein, and patient sex. The authors trained and validated several binary classifiers: k-nearest neighbors models, support vector machines, naïve Bayes classifiers, and artificial neural networks as well as logistic regression models to predict tumor grade. The area under the curve-receiver operating characteristic curve was used for comparison across and within model classes. All analyses were performed in MATLAB using a MacBook Pro.RESULTSThe authors included 6 preoperative imaging and demographic variables: tumor volume, degree of peritumoral edema, presence of necrosis, tumor location, patient sex, and presence of a draining vein to construct the models. The artificial neural networks outperformed all other ML models across the true-positive versus false-positive (receiver operating characteristic) space (area under curve = 0.8895).CONCLUSIONSML algorithms are powerful computational tools that can predict meningioma grade with great accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
allia完成签到 ,获得积分10
刚刚
cczltdy完成签到,获得积分10
1秒前
橙尘尘完成签到,获得积分10
1秒前
2秒前
2秒前
竹筏过海应助pepsi采纳,获得30
2秒前
非理性或发布了新的文献求助10
2秒前
YYY发布了新的文献求助10
3秒前
3秒前
ddddd发布了新的文献求助10
3秒前
3秒前
Hello应助ccc采纳,获得10
3秒前
3秒前
Jerry完成签到,获得积分20
3秒前
健忘的金发布了新的文献求助10
3秒前
hxx完成签到,获得积分10
3秒前
xiazixiaojie发布了新的文献求助10
3秒前
临界完成签到,获得积分10
4秒前
大个应助龙宝采纳,获得30
4秒前
1jiaaa发布了新的文献求助10
4秒前
余味应助beichuanheqi采纳,获得10
4秒前
orixero应助超人不会飞采纳,获得10
4秒前
Ava应助mmol采纳,获得10
5秒前
5秒前
宫跃然发布了新的文献求助10
6秒前
研友_VZG7GZ应助xiangxinzx采纳,获得30
6秒前
DMMM完成签到,获得积分10
6秒前
天天快乐应助儒雅鹤轩采纳,获得10
7秒前
科研通AI5应助DXXX采纳,获得30
7秒前
亦依然完成签到 ,获得积分10
7秒前
8秒前
开放以南完成签到,获得积分10
8秒前
陈隆完成签到,获得积分10
8秒前
能干宛秋发布了新的文献求助10
8秒前
阳仔完成签到,获得积分10
8秒前
whs发布了新的文献求助10
9秒前
loor发布了新的文献求助10
10秒前
yc发布了新的文献求助10
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868