Design Optimization of Auxetic Structure for Crashworthy Pouch Battery Protection Using Machine Learning Method

辅助 有限元法 拉丁超立方体抽样 极限学习机 结构工程 计算机科学 吸收(声学) 材料科学 人工神经网络 复合材料 数学 人工智能 工程类 蒙特卡罗方法 统计
作者
Farras Carakapurwa,Sigit Puji Santosa
出处
期刊:Energies [MDPI AG]
卷期号:15 (22): 8404-8404 被引量:14
标识
DOI:10.3390/en15228404
摘要

In 2021, the electric vehicles (EVs) market reached a record-breaking 6.5 million vehicles, and it will continuously grow to USD 31 million in 2030. However, the risk of battery damage should be reduced using a lightweight crashworthy protection system, which can be performed through design optimization to achieve maximum Specific Energy Absorption (SEA). Maximum SEA can be gained by selecting a material with a light weight and high energy absorption properties. An auxetic-shaped cell structure was used since its negative Poisson ratio yields better energy absorption. The research was performed by varying the auxetic cell shape (Re-entrant, Double Arrow, Star-shaped, Double-U), material selection (GFRP, CFRP, aluminum, carbon steel), and geometry variables until the maximum possible SEA was reached. The Finite Element Method (FEM) was used to simulate the impact and obtain the value of the SEA of the varied auxetic cellular structure design samples. The design variation amounted to 100 samples generated using Latin Hypercube Sampling (LHS) to distribute the variables. Finally, the Machine Learning method predicted the design that yielded maximum SEA. The optimization process through Machine Learning consisted of two processes: model approximation using an Artificial Neural Network (ANN) and variable optimization using a Nondominated Sorting Genetic Algorithm-II (NSGA-II). The optimization demonstrated that the maximum SEA resulted from Star-shaped auxetic cells and aluminum material with a thickness of 2.95 mm. This design yielded 1220% higher SEA compared to the baseline model. A numerical simulation was also carried out to validate the result. The prediction error amounted to 6.7%, meaning that the approximation model can successfully predict the most optimum design. After the complete battery system configuration simulation, the design could also prevent excessive battery deformation. Therefore, the optimized structure can protect the battery from failure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小树杈发布了新的文献求助10
刚刚
科研小吴发布了新的文献求助10
刚刚
完美世界应助xtutang采纳,获得10
刚刚
万安安发布了新的文献求助10
刚刚
香橼琥珀关注了科研通微信公众号
刚刚
爱骑车的CH完成签到 ,获得积分10
1秒前
shezhinicheng完成签到,获得积分10
1秒前
吴子优完成签到,获得积分10
1秒前
1秒前
塔麻头完成签到,获得积分10
2秒前
华仔应助JY采纳,获得10
2秒前
lingck发布了新的文献求助10
3秒前
有人应助kirito1211采纳,获得10
3秒前
风中惜寒发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
风趣甜瓜完成签到,获得积分20
5秒前
5秒前
5秒前
pifu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
万安安完成签到,获得积分10
6秒前
yizongting发布了新的文献求助10
6秒前
长情储发布了新的文献求助10
7秒前
yangziwei完成签到,获得积分10
8秒前
Nat完成签到,获得积分10
8秒前
学习完成签到,获得积分10
8秒前
周爱李发布了新的文献求助10
8秒前
研究生发布了新的文献求助10
9秒前
慕青应助Serendipity采纳,获得10
9秒前
英俊的铭应助pifu采纳,获得10
9秒前
幽默芸遥发布了新的文献求助10
9秒前
所所应助风中惜寒采纳,获得30
9秒前
烂漫香水发布了新的文献求助10
10秒前
11秒前
科研小吴完成签到,获得积分20
11秒前
难过盼海发布了新的文献求助10
11秒前
ganerwahaha完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473665
求助须知:如何正确求助?哪些是违规求助? 4575821
关于积分的说明 14354677
捐赠科研通 4503392
什么是DOI,文献DOI怎么找? 2467604
邀请新用户注册赠送积分活动 1455446
关于科研通互助平台的介绍 1429459