抗辐射性
光催化
异质结
材料科学
催化作用
辐照
放射治疗
辐射
原位
降级(电信)
氧气
选择性
缺氧(环境)
光化学
纳米技术
癌症研究
光电子学
化学
生物
光学
计算机科学
医学
物理
有机化学
生物化学
核物理学
电信
内科学
作者
Dongmei Wang,You Liao,Haili Yan,Shuang Zhu,Yunpeng Liu,Jian Li,Xue Wang,Xihong Guo,Zhanjun Gu,Baoyun Sun
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-11-29
卷期号:16 (12): 21186-21198
被引量:37
标识
DOI:10.1021/acsnano.2c09169
摘要
Photon radiotherapy is a common tool in the armory against tumors, but it is limited by hypoxia-related radioresistance of tumors and radiotoxicity to normal tissues. Here, we constructed a spatiotemporally controlled synergistic therapy platform based on the heterostructured CuO@Graphdiyne (CuO@GDY) nanocatalyst for simultaneously addressing the two key problems above in radiotherapy. First, the in situ formed Z-scheme CuO@GDY heterojunction performs highly efficient and controlled photocatalytic O2 evolution upon near-infrared (NIR) laser stimulation for tumor hypoxia alleviation. Subsequently, the CuO@GDY nanocatalyst with X-ray-stimulated Cu+ active sites can accelerate Fenton-like catalysis of ·OH production by responding to endogenous H2O2 for the selective killing of tumor cells rather than normal cells. In this way, the sequential combination of NIR-triggered photocatalytic O2 production and X-ray-accelerated Fenton-like reaction can lead to a comprehensive radiosensitization. Overall, this synergism underscores a controllable and precise therapy modality for simultaneously unlocking the hypoxia and non-selectivity in radiotherapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI