A novel physics-informed framework for reconstruction of structural defects

过程(计算) 人工神经网络 领域(数学) 计算机科学 噪音(视频) 质量(理念) 人工智能 散射 深度学习 无损检测 计算机工程 能量(信号处理) 能源消耗 机器学习 工程类 物理 光学 数学 电气工程 量子力学 纯数学 图像(数学) 操作系统
作者
Qi Li,Fushun Liu,Bin Wang,D. Z. Liu,Zhenghua Qian
出处
期刊:Applied Mathematics and Mechanics-english Edition [Springer Science+Business Media]
卷期号:43 (11): 1717-1730 被引量:1
标识
DOI:10.1007/s10483-022-2912-6
摘要

Abstract The ultrasonic guided wave technology plays a significant role in the field of non-destructive testing as it employs acoustic waves with the advantages of high propagation efficiency and low energy consumption during the inspect process. However, the theoretical solutions to guided wave scattering problems with assumptions such as the Born approximation have led to the poor quality of the reconstructed results. Besides, the scattering signals collected from industry sectors are often noised and nonstationary. To address these issues, a novel physics-informed framework (PIF) for the quantitative reconstruction of defects by means of the integration of the data-driven method with the guided wave scattering analysis is proposed in this paper. Based on the geometrical information of defects and initial results obtained by the PIF-based analysis of defect reconstructions, a deep-learning neural network model is built to reveal the physical relationship between the defects and the noisy detection signals. This learning model is then adopted to assess and characterize the defect profiles in structures, improve the accuracy of the analytical model, and eliminate the impact of the noise pollution in the process of inspection. To demonstrate the advantages of the developed PIF for the complex defect reconstructions with the capability of denoising, several numerical examples are carried out. The results show that the PIF has greater accuracy for the reconstruction of defects in the structures than the analytical method, and provides a valuable insight into the development of artificial intelligence (AI)-assisted inspection systems with high accuracy and efficiency in the fields of structural integrity and condition monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赵世璧发布了新的文献求助10
2秒前
顾矜应助阳炎采纳,获得10
6秒前
sherry221完成签到,获得积分10
8秒前
子车茗应助科研通管家采纳,获得30
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
冰魂应助科研通管家采纳,获得20
11秒前
11秒前
呃呃呃c应助科研通管家采纳,获得10
11秒前
彬彬应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
冰魂应助科研通管家采纳,获得10
12秒前
呃呃呃c应助科研通管家采纳,获得10
12秒前
子车茗应助科研通管家采纳,获得50
12秒前
12秒前
酷波er应助科研通管家采纳,获得30
12秒前
12秒前
Rainbow完成签到 ,获得积分10
13秒前
不开心发布了新的文献求助10
14秒前
lucky完成签到 ,获得积分10
16秒前
阳炎发布了新的文献求助10
17秒前
ang完成签到,获得积分10
18秒前
CCL完成签到,获得积分10
19秒前
19秒前
Zachtack完成签到 ,获得积分10
20秒前
小丸子完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
25秒前
geold完成签到,获得积分10
29秒前
机智剑封发布了新的文献求助10
31秒前
33秒前
不吃香菜完成签到 ,获得积分10
36秒前
神经娃完成签到,获得积分10
36秒前
斯文败类应助熊许君采纳,获得10
37秒前
xiaotaiyang完成签到,获得积分10
38秒前
哈哈哈完成签到,获得积分10
38秒前
文艺的初南完成签到 ,获得积分10
39秒前
ANT发布了新的文献求助10
41秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864066
求助须知:如何正确求助?哪些是违规求助? 3406339
关于积分的说明 10649308
捐赠科研通 3130285
什么是DOI,文献DOI怎么找? 1726364
邀请新用户注册赠送积分活动 831635
科研通“疑难数据库(出版商)”最低求助积分说明 779990