Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking

聚合物囊泡 脂质体 小泡 人工细胞 细胞器 脂质双层 纳米反应器 生物物理学 纳米载体 纳米技术 化学 材料科学 药物输送 两亲性 纳米颗粒 聚合物 共聚物 生物化学 生物 有机化学
作者
Xiaorui Wang,Jinming Hu,Shiyong Liu
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:55 (23): 3404-3416 被引量:26
标识
DOI:10.1021/acs.accounts.2c00442
摘要

In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助若有光采纳,获得10
3秒前
Hello应助WFLLL采纳,获得10
3秒前
斯文败类应助wf0806采纳,获得10
3秒前
轻松小之发布了新的文献求助10
4秒前
e1完成签到,获得积分10
6秒前
home完成签到,获得积分10
7秒前
hansJAMA发布了新的文献求助10
9秒前
大模型应助天行马采纳,获得10
17秒前
VirgoW完成签到,获得积分10
19秒前
脆脆鲨鱼完成签到,获得积分10
22秒前
24秒前
Letter完成签到 ,获得积分10
26秒前
科目三应助TWT采纳,获得10
28秒前
远方发布了新的文献求助10
28秒前
30秒前
闵卷完成签到,获得积分10
32秒前
爱听歌的梦易完成签到 ,获得积分10
34秒前
Mycee完成签到 ,获得积分10
34秒前
高c发布了新的文献求助10
35秒前
35秒前
VirgoW发布了新的文献求助10
37秒前
科研通AI5应助勤奋的汉堡采纳,获得10
38秒前
Eton发布了新的文献求助30
38秒前
white完成签到 ,获得积分10
39秒前
42秒前
lingo完成签到 ,获得积分10
42秒前
保持好心情完成签到 ,获得积分10
44秒前
美好斓发布了新的文献求助10
46秒前
落后钢铁侠完成签到 ,获得积分10
47秒前
HL发布了新的文献求助20
48秒前
51秒前
estella完成签到,获得积分10
52秒前
ptjam完成签到 ,获得积分10
53秒前
小二郎应助暴躁的香氛采纳,获得10
55秒前
pupu完成签到 ,获得积分10
55秒前
58秒前
Felix完成签到,获得积分10
58秒前
在水一方应助温柔诺言采纳,获得10
1分钟前
1分钟前
充电宝应助一一采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133