Engineering mesophilic GH11 xylanase from Cellulomonas flavigena by rational design of N-terminus substitution

木聚糖酶 木二糖 热稳定性 化学 水解 木聚糖 中层 木糖 生物化学 糖苷水解酶 食品科学 生物 细菌 发酵 遗传学
作者
Wenzhuo Tian,Ziyang Zhang,Chen Yang,Piwu Li,Xiao,Ruiming Wang,Peijun Du,Nan Li,Junqing Wang
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:10
标识
DOI:10.3389/fbioe.2022.1044291
摘要

Xylanase, a glycoside hydrolase, is widely used in the food, papermaking, and textile industries; however, most xylanases are inactive at high temperatures. In this study, a xylanase gene, CFXyl3, was cloned from Cellulomonas flavigena and expressed in Escherichia coli BL21 (DE3). To improve the thermostability of xylanase, four hybrid xylanases with enhanced thermostability (designated EcsXyl1-4) were engineered from CFXyl3, guided by primary and 3D structure analyses. The optimal temperature of CFXyl3 was improved by replacing its N-terminus with the corresponding area of SyXyn11P, a xylanase that belongs to the hyperthermostable GH11 family. The optimal temperatures of the hybrid xylanases EcsXyl1-4 were 60, 60, 65, and 85°C, respectively. The optimal temperature of EcsXyl4 was 30 C higher than that of CFXyl3 (55°C) and its melting temperature was 34.5°C higher than that of CFXyl3. After the hydrolysis of beechwood xylan, the main hydrolysates were xylotetraose, xylotriose, and xylobiose; thus, these hybrid xylanases could be applied to prebiotic xylooligosaccharide manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
holl完成签到,获得积分10
刚刚
神奇的种子完成签到 ,获得积分10
3秒前
自由灵雁发布了新的文献求助10
3秒前
4秒前
4秒前
愉快的觅云完成签到,获得积分20
5秒前
碎冰完成签到,获得积分10
7秒前
李大侠完成签到,获得积分10
7秒前
gfqdts66完成签到 ,获得积分10
7秒前
8秒前
10秒前
10秒前
十二发布了新的文献求助10
10秒前
12秒前
碎冰发布了新的文献求助10
12秒前
12秒前
13秒前
李健的小迷弟应助yan琰采纳,获得30
14秒前
猪猪hero发布了新的文献求助10
14秒前
LADY发布了新的文献求助30
15秒前
大气藏今发布了新的文献求助10
16秒前
李海鹏关注了科研通微信公众号
17秒前
一盏壶发布了新的文献求助10
21秒前
科研通AI2S应助二差爱吃采纳,获得10
21秒前
bkagyin应助小肥采纳,获得10
22秒前
22秒前
23秒前
水水发布了新的文献求助10
23秒前
酷波er应助东郭凝蝶采纳,获得10
25秒前
科研通AI5应助大气藏今采纳,获得10
25秒前
FashionBoy应助刻苦大叔采纳,获得10
26秒前
研友_Y59685发布了新的文献求助10
27秒前
Lucas应助三新荞采纳,获得10
28秒前
奋斗的盼柳完成签到 ,获得积分10
29秒前
30秒前
olekravchenko发布了新的文献求助10
31秒前
善学以致用应助十二采纳,获得20
32秒前
33秒前
33秒前
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836283
求助须知:如何正确求助?哪些是违规求助? 3378620
关于积分的说明 10505293
捐赠科研通 3098250
什么是DOI,文献DOI怎么找? 1706351
邀请新用户注册赠送积分活动 820987
科研通“疑难数据库(出版商)”最低求助积分说明 772351