Prediction and early warning of wind-induced girder and tower vibration in cable-stayed bridges with machine learning-based approach

大梁 结构工程 振动 桥(图论) 塔楼 工程类 台风 预警系统 跨度(工程) 风速 结构健康监测 地质学 声学 电信 内科学 物理 海洋学 医学
作者
Xiao‐Wei Ye,Zhen Sun,Jun Lu
出处
期刊:Engineering Structures [Elsevier BV]
卷期号:275: 115261-115261 被引量:30
标识
DOI:10.1016/j.engstruct.2022.115261
摘要

Long-span cable-stayed bridges are prone to significant vibrations under strong wind events such as typhoons, which pose a risk to the bridge functioning and the driving safety of passing vehicles. Structural health monitoring (SHM) systems were widely deployed in most long-span bridges, providing long-term measurements of wind characteristics and vibrations of girders and towers. This paper proposes a data-driven approach to predict the vibration amplitudes of girder and towers for early warning based on state-of-the-art machine learning algorithms. A cable-stayed bridge with a main span of 1088 m is taken as the case study. The monitoring data during a strong typhoon Haikui are extracted to establish the database for training the machine learning models. Wind speed, wind direction, and turbulence intensity are selected as input variables, and girder and tower vibrations are considered as the output. Vertical and lateral vibrations are predicted for the girder, while in-plane and out-of-plane vibrations for the tower. Random Forest (RF) is used for vibration prediction and has demonstrated better accuracy than other typical algorithms. An integrated girder vibration indicator is proposed for early warning considering vertical and lateral directions. Gaussian Mixture Model (GMM) is used to approximate the distribution of the vibration indicator with Akaike information criterion (AIC). The early warning is implemented with monitoring data and predicted results. The proposed approach can guide the bridge operator to manage and maintain bridges during typhoon events and avoid bridge damage and traffic accidents due to excessive vibration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
LSJ发布了新的文献求助10
3秒前
梨不圆发布了新的文献求助10
3秒前
4秒前
深情安青应助春风十二夜采纳,获得10
4秒前
4秒前
孤独如曼发布了新的文献求助10
4秒前
4秒前
CipherSage应助追寻紫安采纳,获得10
5秒前
溪鱼发布了新的文献求助10
5秒前
66m37发布了新的文献求助20
6秒前
7秒前
SYLH应助一只不大可爱的蛋采纳,获得10
7秒前
7秒前
8秒前
8秒前
Rui完成签到 ,获得积分10
8秒前
扶风完成签到,获得积分10
8秒前
9秒前
田様应助Rosyyyy采纳,获得10
9秒前
汪哈七发布了新的文献求助10
9秒前
范凛完成签到,获得积分20
10秒前
阿金发布了新的文献求助10
10秒前
四夕完成签到 ,获得积分10
10秒前
125倒数第完成签到 ,获得积分10
11秒前
Owen应助笨笨的水之采纳,获得20
11秒前
12秒前
12秒前
liquor完成签到,获得积分10
12秒前
雪上一枝蒿完成签到,获得积分10
12秒前
kilig发布了新的文献求助200
12秒前
哈哈哈完成签到,获得积分10
13秒前
13秒前
14秒前
CaptainMeme发布了新的文献求助10
14秒前
范凛发布了新的文献求助30
15秒前
15秒前
雪白的南晴完成签到,获得积分10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813277
求助须知:如何正确求助?哪些是违规求助? 3357756
关于积分的说明 10388193
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689097
邀请新用户注册赠送积分活动 812548
科研通“疑难数据库(出版商)”最低求助积分说明 767178