SaB-Net: Self-attention backward network for gastric tumor segmentation in CT images

分割 计算机科学 癌症 人工智能 图像分割 深度学习 模式识别(心理学) 医学 内科学
作者
Junjie He,Mudan Zhang,Wuchao Li,Yunsong Peng,Bangkang Fu,Chen Liu,Jian Wang,Rongpin Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:169: 107866-107866 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107866
摘要

Gastric cancer is a significant contributor to cancer-related fatalities globally. The automated segmentation of gastric tumors has the potential to analyze the medical condition of patients and enhance the likelihood of surgical treatment success. However, the development of an automatic solution is challenged by the heterogeneous intensity distribution of gastric tumors in computed tomography (CT) images, the low-intensity contrast between organs, and the high variability in the stomach shapes and gastric tumors in different patients. To address these challenges, we propose a self-attention backward network (SaB-Net) for gastric tumor segmentation (GTS) in CT images by introducing a self-attention backward layer (SaB-Layer) to feed the self-attention information learned at the deep layer back to the shallow layers. The SaB-Layer efficiently extracts tumor information from CT images and integrates the information into the network, thereby enhancing the network's tumor segmentation ability. We employed datasets from two centers, one for model training and testing and the other for external validation. The model achieved dice scores of 0.8456 on the test set and 0.8068 on the external verification set. Moreover, we validated the model's transfer learning ability on a publicly available liver cancer dataset, achieving results comparable to state-of-the-art liver cancer segmentation models recently developed. SaB-Net has strong potential for assisting in the clinical diagnosis of and therapy for gastric cancer. Our implementation is available at https://github.com/TyrionJ/SaB-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HY发布了新的文献求助10
3秒前
Kyler发布了新的文献求助10
4秒前
领导范儿应助YY采纳,获得10
4秒前
5秒前
5秒前
隐形曼青应助淡然采纳,获得10
5秒前
金木水火土完成签到,获得积分10
5秒前
Zzzzz发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
美丽大肚腩完成签到,获得积分10
9秒前
害怕的听筠完成签到,获得积分10
9秒前
汉堡包应助222采纳,获得10
9秒前
浮游应助mmyhn采纳,获得10
9秒前
10秒前
10秒前
徐月亮发布了新的文献求助20
11秒前
11秒前
秋澄发布了新的文献求助10
11秒前
Shenliheng发布了新的文献求助10
13秒前
14秒前
吴荣方发布了新的文献求助10
14秒前
打打应助火速阿百川采纳,获得10
16秒前
YY发布了新的文献求助10
16秒前
乐乐应助柴犬采纳,获得10
19秒前
zx发布了新的文献求助10
19秒前
秋日思语发布了新的文献求助10
19秒前
cccccgggmmm完成签到,获得积分10
19秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
linjt完成签到 ,获得积分10
22秒前
22秒前
孙涛发布了新的文献求助10
23秒前
23秒前
Elliot完成签到,获得积分10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687