Monitoring of Laser Powder Bed Fusion process by bridging dissimilar process maps using deep learning-based domain adaptation on acoustic emissions

材料科学 稳健性(进化) 过程(计算) 计算机科学 锁孔 偏移量(计算机科学) 波形 融合 传感器融合 人工智能 桥接(联网) 机器学习 操作系统 程序设计语言 基因 冶金 焊接 哲学 语言学 雷达 化学 生物化学 计算机网络 电信
作者
Vigneashwara Pandiyan,Rafał Wróbel,R. Richter,Marc Leparoux,Christian Leinenbach,Sergey Shevchik
出处
期刊:Additive manufacturing [Elsevier BV]
卷期号:80: 103974-103974 被引量:17
标识
DOI:10.1016/j.addma.2024.103974
摘要

Advances in sensorization and identification of information embedded inside sensor signatures during manufacturing processes using Machine Learning (ML) algorithms for better decision-making have become critical enablers in building data-driven monitoring systems. In the Laser Powder Bed Fusion (LPBF) process, data-driven-based process monitoring is gaining popularity since it allows for real-time component quality verification. Real-time qualification of the additively manufactured parts has a significant advantage as the cost of conventional post-manufacturing inspection methods can be reduced. Also, corrective actions or build termination could be done to save machine time and resources. However, despite the successful development in addressing monitoring needs in LPBF processes, less research has been paid to the ML model's robustness in decision-making when dealing with variations in data distribution from the laser-material interaction owing to different process spaces. Inspired by the idea of domain adaptation in ML, in this work, we propose a deep learning-based unsupervised domain adaptation technique to tackle shifts in data distribution owing to different process parameter spaces. The temporal waveforms of acoustic emissions from the LPBF process zone corresponding to three regimes, namely Lack of Fusion, conduction, and keyhole, were acquired on two different 316 L stainless steel powder distributions (> 45 µm and < 45 µm) with two different parameter sets. Temporal and spectral analysis of the acoustic waveforms corresponding to the powder distributions treated with different laser parameters showed the presence of offset in the data distribution, which was subsequently treated with the proposed unsupervised domain adaptation technique to have an ML model that could be generalized. Furthermore, the prediction accuracy of the proposed methodology between the two distributions showed the feasibility of adapting to the newer environment unsupervisedly and improving the ML model's generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCL完成签到,获得积分10
刚刚
dujinjun完成签到,获得积分10
刚刚
1秒前
1秒前
所所应助ccc采纳,获得10
1秒前
WUXIN完成签到,获得积分10
1秒前
Chen完成签到 ,获得积分10
2秒前
3秒前
斯文败类应助pbj采纳,获得10
4秒前
shutong完成签到,获得积分10
5秒前
5秒前
Akim应助罗丹丹采纳,获得10
5秒前
情怀应助罗丹丹采纳,获得10
5秒前
CAOHOU应助罗丹丹采纳,获得10
5秒前
xfyxxh完成签到,获得积分10
5秒前
淡然的奎完成签到,获得积分10
6秒前
73Jennie123完成签到,获得积分10
6秒前
大胆香彤完成签到,获得积分10
6秒前
Yeee完成签到,获得积分20
6秒前
6秒前
ok123发布了新的文献求助10
6秒前
三笠完成签到,获得积分10
6秒前
KXX完成签到,获得积分10
6秒前
摆烂fish完成签到,获得积分10
6秒前
暴龙战士完成签到,获得积分10
7秒前
虚幻的雪巧完成签到,获得积分10
8秒前
pluto应助任生平采纳,获得50
8秒前
hindbind完成签到,获得积分10
10秒前
10秒前
蟋蟀狂舞完成签到,获得积分10
10秒前
果果完成签到,获得积分10
11秒前
打工牛牛应助迷路的士晋采纳,获得10
11秒前
11秒前
善学以致用应助暴龙战士采纳,获得10
12秒前
细腻的宫二完成签到,获得积分10
12秒前
思源应助hzw83采纳,获得10
12秒前
周少完成签到,获得积分10
12秒前
专一的猎豹完成签到,获得积分10
12秒前
XinyuLu完成签到,获得积分10
13秒前
huoguo完成签到,获得积分10
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061708
求助须知:如何正确求助?哪些是违规求助? 3600367
关于积分的说明 11433596
捐赠科研通 3323822
什么是DOI,文献DOI怎么找? 1827495
邀请新用户注册赠送积分活动 897956
科研通“疑难数据库(出版商)”最低求助积分说明 818792