Domain shared features for visual inspection of complex mechanical assemblies based on synthetically generated data

计算机科学 深度学习 点云 人工智能 预处理器 领域(数学分析) 数据预处理 人工神经网络 机器学习 数据处理 云计算 数据库 数学分析 数学 操作系统
作者
Velibor Došljak,Igor Jovančević,Jean‐José Orteu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:33 (03)
标识
DOI:10.1117/1.jei.33.3.031205
摘要

Even though neural network methodologies have been established for a long time, only recently have they achieved exceptional efficacy in practical deployments, predominantly due to improvements in hardware computational capacity and the large amounts of available data for learning. Nonetheless, substantial challenges remain in utilizing deep learning in many domains, mainly because of the lack of large amounts of labeled data that are versatile enough for deep learning models to learn useful information. For instance, in mechanical assembly inspection, annotating data for each type of mechanical part to train a deep learning model can be very labor-intensive. Additionally, it is required to annotate data after each modification of mechanical part specification. Also, the system for inspection is typically not available until the first few samples are built to collect data. This paper proposes a solution for these challenges in case of the visual mechanical assembly inspection by processing point cloud data acquired via a three-dimensional (3D) scanner. To reduce the necessity for manually labeling large amounts of data, we employed synthetically generated data for both training and validation purposes, reserving the real sensor data exclusively for the testing phase. Our approach reduces the need for large amounts of labeled data by using synthetically generated point clouds from computer-aided design models for neural network training. Domain gap is a significant challenge for the usage of synthetically generated data. To reduce the domain gap, we used different preprocessing techniques, as well as a neural network architecture that focuses more on shared features that will not significantly change between synthetically generated data and real data from the 3D sensor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三毛发布了新的文献求助10
刚刚
Winfred发布了新的文献求助10
1秒前
上官若男应助玉汝于成采纳,获得10
1秒前
李明涵完成签到 ,获得积分10
2秒前
科研通AI5应助lily采纳,获得30
2秒前
4秒前
温水完成签到 ,获得积分10
5秒前
Rookie发布了新的文献求助10
11秒前
11秒前
11秒前
栗子完成签到 ,获得积分10
12秒前
12秒前
13秒前
赘婿应助Panax采纳,获得10
14秒前
lily发布了新的文献求助30
16秒前
柔弱的不二完成签到 ,获得积分10
16秒前
赵雨霏完成签到 ,获得积分10
17秒前
玉汝于成发布了新的文献求助10
17秒前
22秒前
22秒前
wanci应助明亮访烟采纳,获得10
23秒前
TRY发布了新的文献求助10
24秒前
hjyylab应助高文强采纳,获得10
24秒前
x1nger完成签到,获得积分10
25秒前
MaFY完成签到,获得积分10
26秒前
咚巴拉发布了新的文献求助10
27秒前
Rookie完成签到,获得积分10
27秒前
劳健龙完成签到 ,获得积分10
28秒前
太吾墨完成签到,获得积分10
28秒前
可乐完成签到,获得积分10
28秒前
30秒前
33秒前
eee发布了新的文献求助10
33秒前
33秒前
有终完成签到 ,获得积分10
33秒前
感动新烟发布了新的文献求助10
35秒前
粥大芃发布了新的文献求助10
39秒前
h7nho完成签到,获得积分10
39秒前
kc135完成签到,获得积分10
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845908
求助须知:如何正确求助?哪些是违规求助? 3388274
关于积分的说明 10552482
捐赠科研通 3108911
什么是DOI,文献DOI怎么找? 1713214
邀请新用户注册赠送积分活动 824607
科研通“疑难数据库(出版商)”最低求助积分说明 774938