mSilent

计算机科学 语音识别 对话 光谱图 安全性令牌 变压器 聚类分析 字错误率 人工智能 自然语言处理 计算机安全 语言学 量子力学 物理 哲学 电压
作者
Shang Zeng,Haoran Wan,Shuyu Shi,Wei Wang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:7 (1): 1-28 被引量:10
标识
DOI:10.1145/3580838
摘要

Silent speech recognition (SSR) allows users to speak to the device without making a sound, avoiding being overheard or disturbing others. Compared to the video-based approach, wireless signal-based SSR can work when the user is wearing a mask and has fewer privacy concerns. However, previous wireless-based systems are still far from well-studied, e.g. they are only evaluated in corpus with highly limited size, making them only feasible for interaction with dozens of deterministic commands. In this paper, we present mSilent, a millimeter-wave (mmWave) based SSR system that can work in the general corpus containing thousands of daily conversation sentences. With the strong recognition capability, mSilent not only supports the more complex interaction with assistants, but also enables more general applications in daily life such as communication and input. To extract fine-grained articulatory features, we build a signal processing pipeline that uses a clustering-selection algorithm to separate articulatory gestures and generates a multi-scale detrended spectrogram (MSDS). To handle the complexity of the general corpus, we design an end-to-end deep neural network that consists of a multi-branch convolutional front-end and a Transformer-based sequence-to-sequence back-end. We collect a general corpus dataset of 1,000 daily conversation sentences that contains 21K samples of bi-modality data (mmWave and video). Our evaluation shows that mSilent achieves a 9.5% average word error rate (WER) at a distance of 1.5m, which is comparable to the performance of the state-of-the-art video-based approach. We also explore deploying mSilent in two typical scenarios of text entry and in-car assistant, and the less than 6% average WER demonstrates the potential of mSilent in general daily applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
岁岁完成签到 ,获得积分10
1秒前
TOF完成签到,获得积分10
1秒前
1秒前
洁净奄完成签到,获得积分10
2秒前
zho发布了新的文献求助10
2秒前
decade完成签到,获得积分10
3秒前
SaSa发布了新的文献求助20
3秒前
研友_VZG7GZ应助neltharion采纳,获得10
5秒前
decade发布了新的文献求助10
6秒前
shiqiang mu应助馨馨采纳,获得10
10秒前
KK完成签到,获得积分10
10秒前
11秒前
12秒前
无语的安白应助天逸采纳,获得30
13秒前
Jasper应助diyi采纳,获得10
14秒前
14秒前
梁小玲发布了新的文献求助20
14秒前
14秒前
研友_LJeoa8发布了新的文献求助10
14秒前
15秒前
zonglei完成签到,获得积分10
16秒前
18秒前
zho发布了新的文献求助10
18秒前
戈屿完成签到 ,获得积分10
19秒前
勿明发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
xxx完成签到,获得积分10
21秒前
安静明杰发布了新的文献求助10
21秒前
小羊完成签到,获得积分20
21秒前
neltharion发布了新的文献求助10
25秒前
25秒前
27秒前
至夏完成签到,获得积分10
27秒前
笨鸟先飞发布了新的文献求助10
28秒前
splemeth完成签到,获得积分10
29秒前
繁荣的忆文完成签到,获得积分10
31秒前
闪闪完成签到,获得积分10
33秒前
Hello应助TYolo采纳,获得10
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3861006
求助须知:如何正确求助?哪些是违规求助? 3403303
关于积分的说明 10634541
捐赠科研通 3126485
什么是DOI,文献DOI怎么找? 1724020
邀请新用户注册赠送积分活动 830303
科研通“疑难数据库(出版商)”最低求助积分说明 779063