Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FCL完成签到,获得积分10
1秒前
哈哈哈发布了新的文献求助10
1秒前
小黄鸭呀完成签到,获得积分10
1秒前
2秒前
dadadarcier发布了新的文献求助30
2秒前
yshog发布了新的文献求助10
2秒前
yongziwu完成签到,获得积分10
2秒前
3秒前
搜集达人应助汪家大亨采纳,获得30
3秒前
激昂的秀发完成签到,获得积分10
3秒前
spark完成签到 ,获得积分10
3秒前
药药55完成签到,获得积分10
3秒前
4秒前
标致的坤完成签到,获得积分10
4秒前
wanci应助神奇海螺采纳,获得10
4秒前
lx关闭了lx文献求助
4秒前
hhh完成签到 ,获得积分10
5秒前
tent01完成签到,获得积分0
5秒前
兵临城下zgb完成签到,获得积分10
5秒前
英俊的铭应助陈宇采纳,获得10
5秒前
怡然的海瑶完成签到,获得积分10
6秒前
孝顺的诗桃完成签到,获得积分10
6秒前
明小丽完成签到,获得积分10
6秒前
6秒前
现代的诗槐完成签到,获得积分10
6秒前
科研通AI2S应助chi采纳,获得10
6秒前
7秒前
懵懂的南风完成签到,获得积分10
7秒前
logolush完成签到 ,获得积分10
7秒前
倩倩0857完成签到,获得积分10
7秒前
8秒前
8秒前
iris601完成签到,获得积分10
8秒前
青檬完成签到 ,获得积分10
9秒前
过时的砖头完成签到 ,获得积分10
9秒前
凯凯完成签到 ,获得积分10
9秒前
9秒前
maz123456完成签到,获得积分10
9秒前
sfsfes完成签到 ,获得积分10
10秒前
10秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Chitosan brush for professional removal of plaque in mild peri-implantitis 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075303
求助须知:如何正确求助?哪些是违规求助? 3614124
关于积分的说明 11471069
捐赠科研通 3332229
什么是DOI,文献DOI怎么找? 1831631
邀请新用户注册赠送积分活动 901588
科研通“疑难数据库(出版商)”最低求助积分说明 820344