已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quality assessment of Compound Yuxingcao Mixture produced by different manufacturers using high performance liquid chromatography and near infrared spectroscopy combined with multivariate algorithms

绿原酸 槲皮素 黄芩苷 偏最小二乘回归 金丝桃苷 化学计量学 主成分分析 色谱法 弗洛斯 高效液相色谱法 数学 计算机科学 人工智能 化学 槲皮素 芦丁 机器学习 抗氧化剂 生物化学
作者
Ye Jin,Junjie Pan,Kejun Cheng
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:139: 105337-105337 被引量:2
标识
DOI:10.1016/j.infrared.2024.105337
摘要

A comprehensive strategy based on high performance liquid chromatography (HPLC) and near infrared (NIR) spectroscopy was developed to assess the quality consistency of Compound Yuxingcao Mixture (CYM) from different manufacturers. Simultaneous determination of 10 marker components (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, acteoside, forsythoside A, quercitrin, baicalin, wogonoside and wogonin) in CYM and 7 marker components (neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, hyperoside, isoquercitrin, quercitrin and quercetin) in Houttuyniae Herba was carried out. Similarity analysis using chromatographic fingerprints and principal component analysis (PCA) were also performed to assess the quality consistency of CYM from different manufacturers. NIR spectroscopy combined with partial least squares (PLS), feed-forward back-propagation network (BP-ANN), and particle swarm optimization based least square support vector machine (PSO-LS-SVM) algorithms were employed for rapid determination of higher-concentration marker components (baicalin, wogonoside and chlorogenic acid) and rapid identification of product manufacturers. The comparative results showed that the PSO-LS-SVM models exhibited more satisfactory fitting results and predictive abilities. This study demonstrated that the combination of multi-component simultaneous determination and fingerprint analysis can help to gain an in-depth and comprehensive understanding of the quality of CYM; NIR technique combined with chemometric methods is useful for the rapid determination, identity and consistency evaluation of CYM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EDTA完成签到,获得积分10
刚刚
bkagyin应助青ZZZZ采纳,获得10
1秒前
柳crystal完成签到,获得积分10
1秒前
Yinzixin完成签到,获得积分10
1秒前
Owen应助简晴采纳,获得10
2秒前
2秒前
yuqinghui98完成签到 ,获得积分10
2秒前
洼地的浮游生物完成签到,获得积分10
2秒前
magiczhu完成签到,获得积分10
2秒前
传统的戎发布了新的文献求助10
3秒前
田様应助今夜回头看采纳,获得10
3秒前
3秒前
干净的信封完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
兴奋的若菱完成签到 ,获得积分10
5秒前
5秒前
蕴蝶完成签到,获得积分20
6秒前
月关完成签到 ,获得积分10
7秒前
汪鸡毛完成签到 ,获得积分10
8秒前
顾矜应助DX采纳,获得10
8秒前
单薄遥完成签到 ,获得积分10
8秒前
欣慰外套完成签到 ,获得积分10
9秒前
酷波er应助tangtang采纳,获得10
9秒前
kkh完成签到 ,获得积分10
9秒前
momo完成签到,获得积分10
9秒前
ccc完成签到 ,获得积分10
9秒前
小猪完成签到 ,获得积分10
9秒前
眯眯眼的山柳完成签到,获得积分10
10秒前
斯文的苡完成签到,获得积分10
10秒前
橙子发布了新的文献求助10
10秒前
研友_P85MX8发布了新的文献求助10
10秒前
小贾爱喝冰美式完成签到 ,获得积分10
11秒前
Fu完成签到 ,获得积分10
11秒前
11秒前
12秒前
狗十七完成签到 ,获得积分10
12秒前
简晴完成签到,获得积分20
13秒前
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469810
求助须知:如何正确求助?哪些是违规求助? 4572816
关于积分的说明 14337210
捐赠科研通 4499740
什么是DOI,文献DOI怎么找? 2465216
邀请新用户注册赠送积分活动 1453708
关于科研通互助平台的介绍 1428227

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10