化学
机械转化
纳米技术
量子隧道
纳米管
细胞内
生物物理学
细胞生物学
光电子学
碳纳米管
生物化学
物理
材料科学
生物
作者
Zhi-Liang Chen,Jiamei Lin,Qianming Li,Xinglei Zhang,Yonggui Song,Hui Li,Wei‐Hua Huang,Jiaquan Xu
标识
DOI:10.1021/acs.analchem.4c01542
摘要
The intercellular communication of mechanotransduction has a significant impact on various cellular processes. Tunneling nanotubes (TNTs) have been documented to possess the capability of transmitting mechanical stimulation between cells, thereby triggering an influx of Ca2+ ions. However, the related kinetic information on the TNT-mediated intercellular mechanotransduction communication is still poorly explored. Herein, we developed a classic and sensitive Pt-functionalized carbon fiber microelectrochemical sensor (Pt/CF) to study the intercellular communication of endothelial mechanotransduction through TNTs. The experimental findings demonstrate that the transmission of mechanical stimulation from stimulated human umbilical vein endothelial cells (HUVECs) to recipient HUVECs connected by TNTs occurred quickly (<100 ms) and effectively promoted nitric oxide (NO) production in the recipient HUVECs. The kinetic profile of NO release exhibited remarkable similarity in stimulated and recipient HUVECs. But the production of NO in the recipient cell is significantly attenuated (16.3%) compared to that in the stimulated cell, indicating a transfer efficiency of approximately 16.3% for TNTs. This study unveils insights into the TNT-mediated intercellular communication of mechanotransduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI