Future of neurocritical care: Integrating neurophysics, multimodal monitoring, and machine learning

神经重症监护 医学 脑自动调节 皮质电图 颅内压 重症监护医学 模态(人机交互) 持续监测 微透析 重症监护室 模式 经颅多普勒 人工智能 机器学习 脑电图 医学物理学 计算机科学 血压 麻醉 内科学 自动调节 社会科学 运营管理 精神科 社会学 经济 中枢神经系统
作者
Bahadar S. Srichawla
出处
期刊:World journal of critical care medicine [Baishideng Publishing Group Co (World Journal of Critical Care Medicine)]
卷期号:13 (2) 被引量:5
标识
DOI:10.5492/wjccm.v13.i2.91397
摘要

Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路路人发布了新的文献求助10
刚刚
刚刚
陈和合发布了新的文献求助10
刚刚
外星人完成签到,获得积分10
1秒前
lixiao1912发布了新的文献求助20
1秒前
1秒前
1秒前
卡皮巴拉完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI2S应助高贵的海安采纳,获得10
3秒前
Zx_1993应助美好斓采纳,获得10
3秒前
gkw发布了新的文献求助10
3秒前
4秒前
4秒前
优美的火龙果完成签到,获得积分10
5秒前
Badada完成签到,获得积分10
5秒前
5秒前
大个应助Dddd采纳,获得30
6秒前
6秒前
顺利毕业发布了新的文献求助30
7秒前
满意又蓝完成签到,获得积分10
7秒前
连衣裙发布了新的文献求助10
8秒前
peir完成签到,获得积分10
8秒前
8秒前
今后应助温柔梦松采纳,获得10
9秒前
汉堡包应助我也会吃饭采纳,获得20
9秒前
番茄炒鸡蛋完成签到,获得积分10
10秒前
10秒前
YuuFeL完成签到,获得积分10
10秒前
sparrow发布了新的文献求助30
10秒前
10秒前
10秒前
11秒前
AW完成签到,获得积分10
11秒前
锣大炮完成签到,获得积分10
12秒前
瓦尔迪发布了新的文献求助10
12秒前
12秒前
雷雷雷发布了新的文献求助20
12秒前
大力元霜完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5025308
求助须知:如何正确求助?哪些是违规求助? 4262235
关于积分的说明 13284961
捐赠科研通 4069603
什么是DOI,文献DOI怎么找? 2225832
邀请新用户注册赠送积分活动 1234456
关于科研通互助平台的介绍 1158447