Dynamic analysis of a drug resistance evolution model with nonlinear immune response

免疫系统 药物反应 响应分析 非线性系统 抗药性 药品 医学 生物 免疫学 药理学 物理 遗传学 量子力学
作者
Tengfei Wang,Xiufen Zou
出处
期刊:Mathematical biosciences [Elsevier BV]
卷期号:374: 109239-109239
标识
DOI:10.1016/j.mbs.2024.109239
摘要

Recent studies have utilised evolutionary mechanisms to impede the emergence of drug-resistant populations. In this paper, we develop a mathematical model that integrates hormonal treatment, immunotherapy, and the interactions among three cell types: drug-sensitive cancer cells, drug-resistant cancer cells and immune effector cells. Dynamical analysis is performed, examining the existence and stability of equilibria, thereby confirming the model's interpretability. Model parameters are calibrated using available prostate cancer data and literature. Through bifurcation analysis for drug sensitivity under different immune effector cells recruitment responses, we find that resistant cancer cells grow rapidly under weak recruitment response, maintain at a low level under strong recruitment response, and both may occur under moderate recruitment response. To quantify the competitiveness of sensitive and resistant cells, we introduce the comprehensive measures R1 and R2, respectively, which determine the outcome of competition. Additionally, we introduce the quantitative indicators CIE1 and CIE2 as comprehensive measures of the immune effects on sensitive and resistant cancer cells, respectively. These two indicators determine whether the corresponding cancer cells can maintain at a low level. Our work shows that the immune system is an important factor affecting the evolution of drug resistance and provides insights into how to enhance immune response to control resistance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
苹果发布了新的文献求助10
1秒前
所所应助小全采纳,获得10
1秒前
隐形曼青应助miaomiao采纳,获得10
2秒前
arrebol完成签到,获得积分10
2秒前
赘婿应助爱啃大虾采纳,获得10
2秒前
2秒前
qyn发布了新的文献求助10
2秒前
科研通AI5应助拉长的沛芹采纳,获得10
2秒前
薏晓完成签到 ,获得积分10
3秒前
深年完成签到,获得积分10
3秒前
3秒前
喜悦秋白完成签到,获得积分10
3秒前
4秒前
orixero应助妮妮采纳,获得10
4秒前
柯南完成签到,获得积分10
4秒前
4秒前
卡卡完成签到,获得积分10
5秒前
nilu发布了新的文献求助10
5秒前
6秒前
闪闪平凡发布了新的文献求助10
6秒前
6秒前
MgZn完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
tigebnb完成签到,获得积分10
8秒前
9秒前
9秒前
han完成签到,获得积分20
9秒前
传统的开山完成签到,获得积分10
10秒前
10秒前
tangli完成签到 ,获得积分10
10秒前
10秒前
顺心纸鹤完成签到,获得积分10
10秒前
可爱的函函应助闪闪平凡采纳,获得10
11秒前
yc发布了新的文献求助10
12秒前
12秒前
LC发布了新的文献求助10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786934
求助须知:如何正确求助?哪些是违规求助? 3332593
关于积分的说明 10256397
捐赠科研通 3047840
什么是DOI,文献DOI怎么找? 1672734
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271