Rapid discrimination of Alismatis Rhizoma and quantitative analysis of triterpenoids based on near-infrared spectroscopy

三萜类 化学 红外光谱学 传统医学 红外线的 光谱学 医学 立体化学 物理 有机化学 光学 量子力学
作者
Lulu Zhao,Wenqi Zhao,Zicheng Zhao,R. Patrick Xian,Ming-yan Jia,Yun-bin Jiang,Zheng Li,Xiaoli Pan,Zhi-qiong Lan,Min Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:321: 124618-124618 被引量:5
标识
DOI:10.1016/j.saa.2024.124618
摘要

This study developed a rapid, accurate, objective and economic method to identify and evaluate the quality of Alismatis Rhizoma (AR) commodities. Traditionally, the identification of plant species and geographical origins of AR commodities mainly relied on experienced staff. However, the subjectivity and inaccuracy of human identification negatively impacted the trade of AR. Besides, liquid chromatographic methods such as ultra-high-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC), the major approach for the determination of triterpenoid contents in AR was time-consuming, expensive, and highly demanded in manoeuvre specialists. In this study, the combination of near-infrared (NIR) spectroscopy and chemometrics as the method was developed and utilised to address the two common issues of identifying the quality of AR commodities. Through the discriminant analysis (DA), the raw NIR spectroscopy data on 119 batches samples from two species and four origins in China were processed to the best pre-processed data. Subsequently, orthogonal partial least squares-discriminant analysis (OPLS-DA) and random forest (RF) as the major chemometrics were used to analyse the best pre-processed data. The accuracy rates by OPLS-DA and RF were respectively 100% and 97.2% for the two species of AR, and respectively100% and 94.4% for the four origins of AR. Meanwhile, a quantitative correction model was established to rapidly and economically predict the seven triterpenoid contents of AR through combining the partial least squares (PLS) method and NIR spectroscopy, and taking the triterpenoid contents measured by UPLC as the reference value, and carry out spectral pre-processing methods and band selection. The final quantitative model correlation coefficients of the seven triterpenoid contents of AR ranged from 0.9000 to 0.9999, indicating that prediction ability of this model had good stability and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花卷发布了新的文献求助30
1秒前
flywire发布了新的文献求助10
2秒前
彭于晏应助LX采纳,获得30
2秒前
4秒前
5秒前
Akim应助谨慎的雁菡采纳,获得10
7秒前
8秒前
喜悦向日葵完成签到 ,获得积分10
9秒前
2053673786发布了新的文献求助10
9秒前
霸气静竹完成签到,获得积分10
9秒前
隐形曼青应助小杭76采纳,获得10
10秒前
浮游应助js110采纳,获得10
10秒前
CipherSage应助魈玖采纳,获得10
11秒前
11秒前
Zeno完成签到 ,获得积分10
11秒前
bobochi发布了新的文献求助10
11秒前
搜集达人应助beta采纳,获得10
11秒前
慕青应助张张采纳,获得10
12秒前
12秒前
13秒前
zzz发布了新的文献求助10
13秒前
稳如老狗完成签到,获得积分10
14秒前
15秒前
隐形曼青应助大白采纳,获得50
16秒前
慕青应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
17秒前
lilili应助科研通管家采纳,获得10
17秒前
17秒前
科目三应助科研通管家采纳,获得10
17秒前
Una发布了新的文献求助10
17秒前
17秒前
17秒前
英姑应助魈玖采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069974
求助须知:如何正确求助?哪些是违规求助? 4291171
关于积分的说明 13369782
捐赠科研通 4111427
什么是DOI,文献DOI怎么找? 2251490
邀请新用户注册赠送积分活动 1256663
关于科研通互助平台的介绍 1189212