Rapid discrimination of Alismatis Rhizoma and quantitative analysis of triterpenoids based on near-infrared spectroscopy

三萜类 化学 红外光谱学 传统医学 红外线的 光谱学 医学 立体化学 物理 有机化学 光学 量子力学
作者
Lulu Zhao,Wenqi Zhao,Zicheng Zhao,R. Patrick Xian,Ming-yan Jia,Yun-bin Jiang,Zheng Li,Xiaoli Pan,Zhi-qiong Lan,Min Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:321: 124618-124618 被引量:5
标识
DOI:10.1016/j.saa.2024.124618
摘要

This study developed a rapid, accurate, objective and economic method to identify and evaluate the quality of Alismatis Rhizoma (AR) commodities. Traditionally, the identification of plant species and geographical origins of AR commodities mainly relied on experienced staff. However, the subjectivity and inaccuracy of human identification negatively impacted the trade of AR. Besides, liquid chromatographic methods such as ultra-high-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC), the major approach for the determination of triterpenoid contents in AR was time-consuming, expensive, and highly demanded in manoeuvre specialists. In this study, the combination of near-infrared (NIR) spectroscopy and chemometrics as the method was developed and utilised to address the two common issues of identifying the quality of AR commodities. Through the discriminant analysis (DA), the raw NIR spectroscopy data on 119 batches samples from two species and four origins in China were processed to the best pre-processed data. Subsequently, orthogonal partial least squares-discriminant analysis (OPLS-DA) and random forest (RF) as the major chemometrics were used to analyse the best pre-processed data. The accuracy rates by OPLS-DA and RF were respectively 100% and 97.2% for the two species of AR, and respectively100% and 94.4% for the four origins of AR. Meanwhile, a quantitative correction model was established to rapidly and economically predict the seven triterpenoid contents of AR through combining the partial least squares (PLS) method and NIR spectroscopy, and taking the triterpenoid contents measured by UPLC as the reference value, and carry out spectral pre-processing methods and band selection. The final quantitative model correlation coefficients of the seven triterpenoid contents of AR ranged from 0.9000 to 0.9999, indicating that prediction ability of this model had good stability and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我我我发布了新的文献求助10
刚刚
秦慧萍发布了新的文献求助10
1秒前
1秒前
suohaiyun发布了新的文献求助10
1秒前
Calvin发布了新的文献求助10
2秒前
龙卷风摧毁停车场完成签到,获得积分10
2秒前
2秒前
2秒前
SYLH应助ark861023采纳,获得10
2秒前
NiLou完成签到,获得积分10
3秒前
cherry发布了新的文献求助10
4秒前
罗白翠完成签到,获得积分10
4秒前
叶燕发布了新的文献求助10
4秒前
酷酷阑香发布了新的文献求助10
4秒前
望十五月完成签到,获得积分10
6秒前
1234hai完成签到 ,获得积分20
7秒前
qqq关注了科研通微信公众号
7秒前
Cherish应助风趣的碧琴采纳,获得10
8秒前
Darren应助超级白昼采纳,获得10
8秒前
8秒前
林儿完成签到,获得积分10
8秒前
CodeCraft应助Jieh采纳,获得10
9秒前
秦慧萍完成签到,获得积分10
9秒前
热心市民小红花应助kiki采纳,获得10
11秒前
高高完成签到,获得积分10
11秒前
zengyiqiao发布了新的文献求助10
11秒前
小茄子爷爷应助dzy采纳,获得30
12秒前
思源应助abib采纳,获得10
12秒前
13秒前
boyerdeng发布了新的文献求助10
15秒前
15秒前
16秒前
17秒前
17秒前
伯赏汝燕发布了新的文献求助10
17秒前
18秒前
18秒前
xiaoze发布了新的文献求助10
19秒前
hellzhu完成签到,获得积分10
19秒前
20秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970