An Intelligent Compound Fault Diagnosis Method Using Generalized Zero-shot Model of Bearing

方位(导航) 零(语言学) 断层(地质) 弹丸 计算机科学 人工智能 算法 材料科学 地质学 地震学 冶金 哲学 语言学
作者
Jian Cen,Bichuang Zhao,Xi Liu,Hankun Huang,Duheng Chen,Haolin Huang,Ke Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096134-096134
标识
DOI:10.1088/1361-6501/ad5900
摘要

Abstract Compound fault occurrence has been unpredictable, especially in industrial scenarios where it is difficult to collect a large number of labeled samples for compound fault. Based on this, this paper proposes a generative generalized zero-shot learning (GZSL) model aimed at synthesizing compound fault features through training with single fault samples. These synthesized features are then used for the recognition of compound fault. Firstly, in order to construct an accurate and effective semantic vector, the semantic generation module and discriminator are utilized to generate the semantics of compound fault. Secondly, a feature extraction module based on CNN is designed to extract various fault features from the two-dimensional time-frequency diagram. Finally, a fault semantic matching module is designed to match the feature vectors of compound faults with the generated fault semantic vectors. This enables the identification of unseen compound fault by computing their maximum similarity. The experimental results demonstrate that the proposed method achieved H scores of 75.83 and 69.24 on two real fault datasets, ensuring the correct classification of compound fault to the greatest extent possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流水巷发布了新的文献求助10
1秒前
2秒前
可爱的函函应助小丸子采纳,获得10
2秒前
凹凸先森发布了新的文献求助50
3秒前
DRDOC完成签到,获得积分10
4秒前
5秒前
缥缈的平露完成签到,获得积分10
5秒前
小蘑菇应助萧萧采纳,获得10
6秒前
Amadeus发布了新的文献求助10
8秒前
12秒前
Amadeus完成签到,获得积分10
13秒前
13秒前
14秒前
小雨应助晓爽采纳,获得10
14秒前
14秒前
崔鹏源完成签到,获得积分10
16秒前
llwxx完成签到,获得积分10
16秒前
16秒前
星辰大海应助Scinature采纳,获得10
16秒前
共享精神应助mm采纳,获得10
17秒前
要减肥芹发布了新的文献求助10
18秒前
19秒前
完美世界应助提米橘采纳,获得50
19秒前
19秒前
小丸子发布了新的文献求助10
19秒前
jiaobaotvxq完成签到,获得积分10
19秒前
xiuxiu发布了新的文献求助10
20秒前
20秒前
大白完成签到,获得积分20
21秒前
ABCDE完成签到,获得积分10
21秒前
研友_LX7478发布了新的文献求助10
22秒前
Whale完成签到 ,获得积分10
23秒前
24秒前
121313发布了新的文献求助10
24秒前
郑佳豪完成签到 ,获得积分10
24秒前
顾矜应助图图采纳,获得10
27秒前
Jasper应助图图采纳,获得10
27秒前
隐形曼青应助图图采纳,获得10
27秒前
彭于晏应助图图采纳,获得10
27秒前
YY本Y应助图图采纳,获得20
27秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4052896
求助须知:如何正确求助?哪些是违规求助? 3591054
关于积分的说明 11412052
捐赠科研通 3317399
什么是DOI,文献DOI怎么找? 1824684
邀请新用户注册赠送积分活动 896197
科研通“疑难数据库(出版商)”最低求助积分说明 817330