cuRL: A Generic Framework for Bi-Criteria Optimum Path-Finding Based on Deep Reinforcement Learning

规划师 最短路径问题 计算机科学 强化学习 路径(计算) 数学优化 运筹学 人工智能 理论计算机科学 数学 图形 计算机网络
作者
Chao Chen,Lujia Li,Ming Li,Yanhua Li,Zhu Wang,Fei Wu,Chaocan Xiang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tits.2022.3219543
摘要

Traditional path-finding studies basically focus on planning the path with the shortest travel distance or the least travel time over city road networks. In recent years, with the increasing needs of diverse routing services in smart cities, the bi-criteria optimum path-finding problem (i.e., minimizing path distance and optimizing extra cost or utility according to users’ preference) has drawn wide attention. For instance, in addition to distance, the previous studies further find routes with more scenery (utility) or less crime risk (cost). However, existing works are scenario-oriented which optimize specific cost or utility, ignoring that the routing planner should be universal to deal with both cost and utility in different real-life scenarios. To fill this gap, this paper proposes a generic bi-criteria optimum path-finding framework ( cu RL) based on deep reinforcement learning (DRL). Specifically, we design a novel state representation and reward function for the DRL model of cuRL to overcome the challenges that 1) the cost and utility should be optimized with minimal path distance in a unified manner; 2) the diverse distributions of cost and utility in various scenarios should be well-addressed. Then, a transition preprocessing method is proposed to enable the efficient training of DRL and avoid detours. Finally, simulations are performed to verify the effectiveness of cuRL , where two criteria (i.e., solar radiation and crime risk) are modelled based on the real-world data in downtown New York. Comparing with a set of baseline algorithms, the evaluation results demonstrate the priority of the proposed framework for its generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
plm发布了新的文献求助20
1秒前
1秒前
1秒前
1秒前
LL完成签到 ,获得积分10
3秒前
3秒前
科研通AI2S应助Weiyu采纳,获得10
3秒前
5秒前
爆米花应助flysky120采纳,获得10
6秒前
李喜喜发布了新的文献求助10
6秒前
陌路发布了新的文献求助10
7秒前
7秒前
赵Zhao发布了新的文献求助10
7秒前
tinghua发布了新的文献求助10
7秒前
7秒前
8秒前
欧阳铭发布了新的文献求助10
8秒前
万能图书馆应助jueshadi采纳,获得10
8秒前
10秒前
大个应助caicai采纳,获得10
10秒前
10秒前
xx发布了新的文献求助10
11秒前
陌路完成签到,获得积分10
11秒前
研友_8RaVBZ完成签到,获得积分10
12秒前
12秒前
七七七发布了新的文献求助10
13秒前
橙子陈发布了新的文献求助10
13秒前
虚幻的莞完成签到,获得积分10
15秒前
16秒前
Ava应助juan采纳,获得10
16秒前
111发布了新的文献求助10
16秒前
共享精神应助欧阳铭采纳,获得10
16秒前
勤奋发卡发布了新的文献求助10
16秒前
大个应助112我的采纳,获得10
18秒前
务实砖头完成签到,获得积分20
19秒前
xiaolintemplee完成签到,获得积分10
20秒前
汉堡包应助cc采纳,获得10
20秒前
20秒前
21秒前
21秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830011
求助须知:如何正确求助?哪些是违规求助? 3372520
关于积分的说明 10473113
捐赠科研通 3092110
什么是DOI,文献DOI怎么找? 1701802
邀请新用户注册赠送积分活动 818638
科研通“疑难数据库(出版商)”最低求助积分说明 770986