乘性噪声
计算机科学
卷积神经网络
人工智能
图像复原
噪音(视频)
锐化
图像(数学)
降噪
合成孔径雷达
操作员(生物学)
计算机视觉
算法
模式识别(心理学)
图像处理
电信
传输(电信)
转录因子
生物化学
化学
信号传递函数
抑制因子
模拟信号
基因
作者
Yingying Li,Simon Hu,Guoxi Ni,Tieyong Zeng
摘要
Multiplicative noise always appears in the formation of image of synthetic aperture radar (SAR) and laser. In this paper, we use deep convolutional neural network (CNN) denoiser prior based alternating direction method of multipliers (ADMM) algorithm to deblur the image with multiplicative Gamma noise in the plug and play framework. In order to restore the image with more details, a sharpening operator is used. Experimental results show that our method achieves higher evaluation index and more abundant visuals.
科研通智能强力驱动
Strongly Powered by AbleSci AI