自编码
计算机科学
量子位元
量子
特征(语言学)
量子态
算法
图像(数学)
量子算法
忠诚
人工智能
量子纠错
量子计算机
参数化复杂度
高保真
模式识别(心理学)
计算机视觉
量子电路
降维
还原(数学)
降噪
理论计算机科学
国家(计算机科学)
图像压缩
量子信息
计算机工程
作者
Yuxing Wei,Hai-Sheng Li,Cong Hu
标识
DOI:10.1142/s0219749925500339
摘要
Quantum autoencoder, as a quantum machine learning algorithm, provides an important research direction for image compression. This paper proposes a quantum autoencoder specifically designed for image compression. We first use feature mapping to store images as quantum states and propose a new parameterized quantum circuit and a pre-training method. After pre-training, a reference state is determined and the circuit parameters are updated through further training. Finally, we experimentally validate the quantum autoencoder. For reconstructed 10-qubit images, the fidelity reaches 0.98 and the SSIM reaches 0.927. For reconstructed 10-qubit noisy images, the PSNR improves by 1.4[Formula: see text]dB. Simulation results demonstrate that the proposed quantum autoencoder efficiently compresses quantum images while also possessing denoising capabilities.
科研通智能强力驱动
Strongly Powered by AbleSci AI