Hybrid quantum-inspired proximal policy optimization for fault detection in wind turbine on supervisory control and data acquisition system

作者
Ayman Taher Hindi,Muhammad Irfan,Sana Yasin,Umar Draz,Tariq Ali,Isha Yasin,Saifur Rahman
标识
DOI:10.1177/09596518251380952
摘要

Fault detection in wind turbine systems remains a significant challenge due to variable operational conditions, the complexity of Supervisory Control and Data Acquisition (SCADA) signals, and the high dimensionality of real-time data. Traditional machine learning and reinforcement learning approaches often encounter limitations such as manual hyperparameter tuning, slow convergence, and susceptibility to local minima. These issues contribute to high false alarm rates and hinder the effectiveness of predictive maintenance strategies. To overcome these challenges, we propose a novel Hybrid Quantum-Inspired Proximal Policy Optimization (QGA-PPO) framework. This method combines the exploratory power of Quantum Genetic Algorithms (QGA) with the adaptive learning capabilities of Proximal Policy Optimization (PPO). The QGA component autonomously optimizes hyperparameters and refines the feature space, thereby enhancing the stability and robustness of PPO policies in complex SCADA environments. We evaluated the proposed framework using real-world SCADA data from 2.5 MW wind turbines. The QGA-PPO model achieved a 97.5% fault detection precision, reduced false alarms by 20%, and exhibited a 30% improvement in convergence speed compared to baseline PPO models. These results confirm the model’s effectiveness for advanced, real-time fault monitoring. Moreover, the framework demonstrates strong scalability, making it suitable for both individual wind turbines and large-scale wind farm systems. This research highlights the potential of quantum-inspired reinforcement learning for enabling autonomous fault tolerance and predictive maintenance in next-generation wind energy infrastructures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮琪发布了新的文献求助10
刚刚
1秒前
青衣北风发布了新的文献求助10
2秒前
2秒前
司宁完成签到,获得积分10
2秒前
3秒前
3秒前
accept发布了新的文献求助10
3秒前
嘟哒哒发布了新的文献求助10
4秒前
noah发布了新的文献求助10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
青衣北风完成签到,获得积分10
6秒前
7秒前
华仔应助轩仔采纳,获得10
7秒前
7秒前
意义完成签到,获得积分10
8秒前
可爱安筠发布了新的文献求助10
8秒前
物理光完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
清脆雪糕发布了新的文献求助10
10秒前
10秒前
Tbangl发布了新的文献求助10
10秒前
11秒前
12秒前
hym111发布了新的文献求助20
12秒前
Fighting发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508592
求助须知:如何正确求助?哪些是违规求助? 4603713
关于积分的说明 14487393
捐赠科研通 4538150
什么是DOI,文献DOI怎么找? 2486806
邀请新用户注册赠送积分活动 1469412
关于科研通互助平台的介绍 1441641