Adapting Vehicle Detectors for Aerial Imagery to Unseen Domains with Weak Supervision

作者
Xiao Fang,Minhyek Jeon,Zhao Qin,Stanislav Panev,Celso P. de Melo,Shuowen Hu,Shayok Chakraborty,Fernando De la Torre
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2507.20976
摘要

Detecting vehicles in aerial imagery is a critical task with applications in traffic monitoring, urban planning, and defense intelligence. Deep learning methods have provided state-of-the-art (SOTA) results for this application. However, a significant challenge arises when models trained on data from one geographic region fail to generalize effectively to other areas. Variability in factors such as environmental conditions, urban layouts, road networks, vehicle types, and image acquisition parameters (e.g., resolution, lighting, and angle) leads to domain shifts that degrade model performance. This paper proposes a novel method that uses generative AI to synthesize high-quality aerial images and their labels, improving detector training through data augmentation. Our key contribution is the development of a multi-stage, multi-modal knowledge transfer framework utilizing fine-tuned latent diffusion models (LDMs) to mitigate the distribution gap between the source and target environments. Extensive experiments across diverse aerial imagery domains show consistent performance improvements in AP50 over supervised learning on source domain data, weakly supervised adaptation methods, unsupervised domain adaptation methods, and open-set object detectors by 4-23%, 6-10%, 7-40%, and more than 50%, respectively. Furthermore, we introduce two newly annotated aerial datasets from New Zealand and Utah to support further research in this field. Project page is available at: https://humansensinglab.github.io/AGenDA

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
隐形曼青应助酷酷的山雁采纳,获得10
5秒前
龙哥哥Antony完成签到,获得积分10
6秒前
6秒前
ding应助zhangxin采纳,获得10
6秒前
LILILI完成签到,获得积分10
6秒前
7秒前
酷波er应助碧蓝笑槐采纳,获得10
9秒前
yb发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
12秒前
12秒前
2150号完成签到,获得积分10
13秒前
鳗鱼起眸发布了新的文献求助10
14秒前
天天快乐应助55666采纳,获得10
14秒前
可爱的函函应助JACK采纳,获得10
15秒前
15秒前
谨慎石头发布了新的文献求助20
16秒前
高高高发布了新的文献求助10
16秒前
2150号发布了新的文献求助10
17秒前
等待毛豆完成签到,获得积分10
17秒前
雪山飞龙发布了新的文献求助10
17秒前
顾矜应助曾经很天真采纳,获得10
18秒前
黎奈发布了新的文献求助10
18秒前
科研小白完成签到,获得积分20
19秒前
乐悠L完成签到 ,获得积分10
20秒前
20秒前
22秒前
23秒前
科研小白发布了新的文献求助30
24秒前
高高高完成签到,获得积分10
25秒前
26秒前
小蘑菇应助包容的小懒虫采纳,获得10
26秒前
机智的雁荷完成签到 ,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601954
求助须知:如何正确求助?哪些是违规求助? 4687248
关于积分的说明 14848264
捐赠科研通 4682437
什么是DOI,文献DOI怎么找? 2539610
邀请新用户注册赠送积分活动 1506406
关于科研通互助平台的介绍 1471359