Seaweed holds significant promise as a renewable feedstock for bioenergy due to its rapid growth, carbon sequestration capacity, and non-competition with terrestrial agriculture. This review examines recent progress in multi-method synergies for optimized energy conversion from seaweed biomass. Physical pre-treatments (e.g., drying, milling, ultrasound, microwave) enhance substrate accessibility but face energy intensity constraints. Chemical processes (acid/alkali, solvent extraction, catalysis) improve lipid/sugar recovery and bio-oil yields, especially via hydrodeoxygenation (HDO) and catalytic cracking over tailored catalysts (e.g., ZSM-5), though cost and byproduct management remain challenges. Biological methods (enzymatic hydrolysis, fermentation) enable eco-friendly valorization but suffer from scalability and enzymatic cost limitations. Critically, integrated approaches—such as microwave-solvent systems or hybrid thermochemical-biological cascades—demonstrate superior efficiency over singular techniques. Upgrading pathways for liquid bio-oil (e.g., HDO, catalytic pyrolysis) show considerable potential for drop-in fuel production, while solid-phase biochar and biogas offer carbon sequestration and circular economy benefits. Future priorities include developing low-cost catalysts, optimizing process economics, and scaling synergies like hydrothermal liquefaction coupled with catalytic upgrading to advance sustainable seaweed biorefineries.