Explainable machine learning framework to predict personalized physiological aging

机器学习 计算机科学 计算生物学 生物 生物信息学
作者
David Bernard,Emmanuel Doumard,Isabelle Ader,Philippe Kémoun,Jean‐Christophe Pagès,Anne Galinier,Sylvain Cussat‐Blanc,Félix Furger,Luigi Ferrucci,Julien Aligon,Cyrille Delpierre,Luc Pénicaud,Paul Monsarrat,Louis Casteilla
出处
期刊:Aging Cell [Wiley]
卷期号:22 (8) 被引量:23
标识
DOI:10.1111/acel.13872
摘要

Abstract Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter‐parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty‐six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age‐specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow‐up. These data show that PPA is a robust, quantitative and explainable ML‐based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juice完成签到 ,获得积分10
2秒前
汉堡包应助今天想吃披萨采纳,获得10
2秒前
3秒前
安茉发布了新的文献求助10
6秒前
7秒前
千葉完成签到,获得积分10
7秒前
李爱国应助cheng采纳,获得10
10秒前
千葉发布了新的文献求助10
10秒前
知识付费完成签到,获得积分10
11秒前
高高菠萝完成签到 ,获得积分10
11秒前
上官若男应助俭朴的一曲采纳,获得10
12秒前
12秒前
小小完成签到 ,获得积分10
15秒前
晨雾锁阳发布了新的文献求助10
16秒前
cc发布了新的文献求助10
17秒前
lingzhi完成签到 ,获得积分10
17秒前
Genius完成签到,获得积分10
19秒前
科研通AI5应助111采纳,获得10
22秒前
22秒前
23秒前
lio完成签到,获得积分10
24秒前
Chen完成签到,获得积分10
24秒前
沉默夏真发布了新的文献求助30
25秒前
容荣发布了新的文献求助10
26秒前
power完成签到,获得积分10
26秒前
29秒前
edsenone发布了新的文献求助10
30秒前
sunshine应助容荣采纳,获得10
31秒前
32秒前
研友_VZG7GZ应助李kyt采纳,获得10
32秒前
33秒前
老虎完成签到,获得积分10
33秒前
33秒前
昏睡的芾完成签到,获得积分20
34秒前
勤奋的如松完成签到,获得积分10
34秒前
安茉完成签到,获得积分10
34秒前
温暖的涵易完成签到,获得积分0
34秒前
南卡发布了新的文献求助10
35秒前
35秒前
邓大发啦啦啦完成签到,获得积分10
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435