Bendability assessment of advanced high strength steels thanks to artificial neural networks

成形性 弯曲 延展性(地球科学) 人工神经网络 结构工程 样品(材料) 断裂(地质) 范围(计算机科学) 抗弯强度 计算机科学 材料科学 工程类 复合材料 人工智能 物理 蠕动 程序设计语言 热力学
作者
M. Teaca,P. Dietsch,L. Durrenberger,Kévin Tihay,S Oueslati
出处
期刊:IOP conference series [IOP Publishing]
卷期号:1284 (1): 012076-012076
标识
DOI:10.1088/1757-899x/1284/1/012076
摘要

Abstract Thanks to their very important strength in addition to their considerable formability and ductility, the newly developed Advanced High Strength Steel (AHSS) allow carmakers to save mass on the vehicles they produce. However, before industrial implementation by OEMs, any grade has to be approved. The bending test defined in VDA238-100 [1] test specification is a key indicator of the material ductility and is increasingly requested in the scope of their homologation. The test consists in bending a square sample of sheet material with a knife. The sample is supported by two rolls. The aim of this test is to determine the maximum angle reachable by the sample before it breaks. We can also derive the maximum strain reachable by the material before fracture initiation. Mainly 2 different angles are defined: the angle after springback, that can be measured manually and the angle at maximum load, which is to be considered in the VDA238-100. The test specification gives instructions on the determination of the bending angle. Nevertheless, the approach is purely geometric and only relies on the parameters of the test. No influence of the tested material is taken into account. This approach can be improved because for AHSS that are very ductile and have a bending angle over 100°, the proposed formula can provide unphysical results. For this reason, the innovative proposed approach is to calculate the bending angle at maximal force and to determine the fracture strain thanks to Artificial Neural Networks, one of the most promising tools for resolution of engineering problems. This new approach considers a large panel of materials tested experimentally or numerically and significantly improves the prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
chenhuiwan完成签到,获得积分10
刚刚
刚刚
duzhi发布了新的文献求助20
刚刚
刚刚
Sereno发布了新的文献求助10
1秒前
Hunter发布了新的文献求助30
1秒前
梦涵发布了新的文献求助10
2秒前
didi发布了新的文献求助30
2秒前
2秒前
结实猕猴桃完成签到 ,获得积分10
2秒前
3秒前
3秒前
yuewang完成签到,获得积分10
3秒前
3秒前
嘿嘿发布了新的文献求助30
4秒前
英俊的铭应助威利大威利采纳,获得30
4秒前
可爱的函函应助潇潇采纳,获得10
5秒前
5秒前
王宇航完成签到,获得积分10
5秒前
yyl应助一个奎采纳,获得10
5秒前
6秒前
沉默雅寒应助大口吃榴莲采纳,获得20
6秒前
千支小刀发布了新的文献求助10
7秒前
zhang08完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
煎饼完成签到,获得积分10
8秒前
8秒前
HAo发布了新的文献求助30
8秒前
幸福妙柏发布了新的文献求助10
8秒前
科目三应助简单的鸡翅采纳,获得10
8秒前
dd36完成签到,获得积分10
9秒前
所所应助美丽的又菡采纳,获得10
9秒前
9秒前
9秒前
hiter发布了新的文献求助30
9秒前
SciGPT应助坚定的红酒采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688